Skip to main content
Fig. 27 | Pacific Journal of Mathematics for Industry

Fig. 27

From: Sub-Riemannian geometry, Hamiltonian dynamics, micro-swimmers, copepod nauplii and copepod robot

Fig. 27

These graphs compares the displacement produced by the decoupled sequential strokes (left picture) with the displacement from the coupled one (right picture). The motion takes over 5 minutes, the decoupled motion is composed of about 9 strokes while the coupled one does about 13 strokes (a 2/3 ratio which is expected since for the decoupled motion there are three leg motion and two for the coupled one). The drift for the decoupled motion is damped toward the end which is due to the copepod moving closer the boundary of the tank and experiencing its effects. We can observed a slight drift for the coupled motion as well due to our robotics copepod set-up being only an approximation of a Low-Reynolds number environment

Back to article page