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Abstract

Hashimoto and Sakurai proposed a signature scheme (HS scheme), whose security is based on the difficulty of
integer factorization. In this paper, we redefine HS scheme as a signature scheme in Multivariate Public Key
Cryptosystems (MPKC). MPKC are public key cryptosystems whose security is based on the difficulty of solving
multivariate quadratic equations, and candidates for post-quantum cryptography. In this paper, we analyze the
security of the extended HS scheme using technique of security analysis for MPKC. Furthermore, based on the security
analysis of the extended HS scheme, we estimate secure parameters of the extended HS scheme.
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1 Introduction
In 1984, Ong, Schnorr and Shamir [15] proposed an effi-
cient signature scheme (OSS signature scheme) using a
bivariate quadratic equation,

x2 + hy2 ≡ mmod N (1)

where h,m are integers and N is a composite num-
ber whose factorization is difficult. The security of this
scheme was supposed to be based on the difficulty of inte-
ger factorization. However, Pollard and Schnorr proposed
an algorithm to solve the equation (1) efficiently without
the factorization of N [18]. Then OSS signature scheme
would be extended to scheme using multivariate variables
and scheme using non-commutative rings.
In 1994, Shamir [20] proposed a multivariate vari-

ant of OSS signature scheme, which is called Birational
Permutation scheme. However, Coppersmith, Stern and
Vaudenary [6] gave an efficient attack by observing lin-
ear combination of components of the public key. In 1997,
Sato and Araki [19] proposed a new scheme extended
from OSS signature scheme using quaternion algebra.
Namely, Z/NZ in OSS signature scheme is replaced by
a quaternion algebra over Z/NZ. However, Coppersmith
[5] gave two efficient attacks using special property of
quaternion algebra. In 2008, Hashimoto and Sakurai [12]
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proposed a new scheme (HS scheme) including property
of both Birational Permutation scheme and Sato-Araki
scheme. In 2010, Uchiyama and Ogura [21] showed that
this scheme is reduced to Rainbow [9], which is a signa-
ture scheme in the multivariate public key cryptosystem
(MPKC), and discussed possibility of forgery in case of HS
scheme with small size.
In this paper, we extend HS scheme to a signature

scheme in MPKC. Therefore, the security of the extended
HS scheme is no longer based on the difficulty of integer
factorization. Generally, schemes in MPKC are expected
to resist attacks using quantum computer, Moreover, we
show that the extended HS scheme has an efficient signa-
ture generation.
On the other hand, Yasuda et al. [25] proposed another

signature scheme “NC-Rainbow” in MPKC, which is an
extension of a signature scheme called “Rainbow” using
non-commutative rings. The paper [25] analyzed the
security of NC-Rainbow for attacks against the original
Rainbow, and estimated the secure parameters of NC-
Rainbow.
In this paper, we analyze the security of the extended

HS scheme. The attacks analyzed in this paper are
1) the attack against Birational Permutation scheme,
2) the attack against Sato-Araki scheme, and the
attacks against Rainbow: 3) UOV [4,13,14], 4) MinRank
[3,11,22], 5) HighRank [10,11,17], 6) direct [2,4,23],
7) Rainbow-Band-Separation (RBS) [10,16], and (8) UOV-
Reconciliation (UOV-R) attacks [10,16].
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This paper is basically a journal version of the paper
[24]. However, the attacks analyzed in the paper [24] are
from 1) to 5) above. In this paper, we add the security anal-
ysis against the attacks 6), 7) and 8). Moreover, we present
secure parameters of the extended HS scheme for several
security levels.

2 Birational permutation scheme
In this section, we summarize the attack of Coppersmith,
Stern and Vaudenary against Birational Permutation
scheme [6]. We will analyze this attack in the extended
HS scheme later. First, we describe Birational Permutation
scheme [20].
Let p, q be primes and N = pq. Assume that the

factorization of N is difficult. Let n be a natural num-
ber. For k = 2, 3, . . . , n, we define gk : (Z/NZ)n →
Z/NZ by a homogeneous quadratic polynomial over
Z/NZ,

gk(x1, x2, . . . , xn) =
k−1∑
i=1

aikxixk +
∑

1≤i≤j≤k−1
aijxixj,

where aij ∈ Z/NZ. The central map of Birational
Permutation scheme is constructed by

G = (
g2, g3, . . . , gn

)
: (Z/NZ)n → (Z/NZ)n−1.

The key generation, the signature generation and
the verification of Birational Permutation scheme are
described as follows.

Key Generation. The secret key consists of primes p, q
and the central map G and two affine (linear) transforma-
tions A1 : (Z/NZ)n−1 → (Z/NZ)n−1, A2 : (Z/NZ)n →
(Z/NZ)n. The public key consists of N and the compos-
ite map F = A1 ◦ G ◦ A2 = ( f2, f3, . . . , fn) : (Z/NZ)n →
(Z/NZ)n−1.

Signature Generation. Let M ∈ (Z/NZ)n−1 be a mes-
sage. We compute A = A−1

1 (M), B = G−1(A), C =
A−1
2 (B) in this order. The signature of the message is C ∈

(Z/NZ)n. HereG−1(A) stands for an element of preimage
of A through G.

Verification. If F(C) = M, then the signature is accepted,
otherwise rejected.

2.1 Attack against birational permutation scheme
It is believed that solving general equations over Z/NZ is
more difficult than that over a finite field. The security of
Birational Permutation scheme was based on the difficulty
of solving the problem over Z/NZ. However, Copper-
smith, Stern and Vaudenary gave an efficient algorithm [6]
to compute A2, a part of the secret key, without solving
equations over Z/NZ.

For simplicity, assume that A2 are linear transforma-
tions. We write A,B for the matrix expression of linear
parts of A1,A2, respectively, and gk , fk (k = 2, 3, . . . , n) are
denoted by

gk(x) = xT Gkx, fk = xT Fkx
(
x = (x1, . . . , xn)T

)
,

for some Fk ,Gk ∈ M(n,Z/NZ). (T means the transpose
operator.) Since

fk(x) =
n∑

l=2
aklxTBTGlBx = xTBT

( n∑
l=2

aklGl

)
Bx

for A = (akl), we have

Fk = BT
( n∑

l=2
aklGl

)
B. (2)

For a variable λ and 1 ≤ k1, k2 ≤ n,

n∑
l=2

ak1 lGl−λ

n∑
l=2

ak2 lGj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ · · · ∗ (
ak1n−λak2n

) ∗

...
. . .

...
...

∗ · · · ∗ (
ak1n−λak2n

) ∗
(
ak1n−λak2n

) ∗ · · · (
ak1n−λak2n

) ∗ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In particular, the determinant of this matrix is factored
by

(
ak1n−λak2n

)2. From (2), the determinant of Fk1 −λFk2
is factored by

(
ak1n−λak2n

)2. Therefore ak1n/ak2n, which
is denoted by λ0, is computed by the public key. By calcu-
lating the kernel and the image of Fk1 − λ0Fk2 , (Z/NZ)n is
decomposed as

(Z/NZ)n = B−1 (
(Z/NZ)n−1 × {0}) ⊕ B−1 ({0}n−1

×(Z/NZ)
)

(3)

Continuing this operation, finally we have a decom-
position

(Z/NZ)n = B−1 (
(Z/NZ) × {0}n−1) ⊕ · · · ⊕ B−1 ({0}n−1

×(Z/NZ)
)

by subspaces with rank 1 over Z/NZ. By rewriting the
public key by a basis along the above decomposition, one
obtains a system of equations with the same form as the
central map, therefore a signature is forged.

3 Sato-Araki scheme
In this section, we summarize two attacks of Coppersmith
against Sato-Araki scheme.We will analyze these attack in
the extended HS scheme later.
Sato-Araki scheme [19] uses a quaternion algebra over

Z/NZ. Let R be a Z/NZ-analogue of the Hamilton’s
quaternion algebra. Namely, R is defined by

R = Z/NZ · 1 ⊕ Z/NZ · i ⊕ Z/NZ · j ⊕ Z/NZ · ij,
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and i2 = j2 = −1, ij = −ji. R is identified with a subring
of a matrix ring by the embedding homomorphism,

R 	 a0 · 1 + a1 · i + a2 · j + a3 · ij


−→
(

a0+a1
√−1a3+a2

√−1
−a3+a2

√−1a0−a1
√−1

)
∈ M

(
2,Z/NZ

[√−1
])

.

(4)

Here, we identify i with the imaginary unit
√−1. Note

that R is closed by the transpose operation. Sato-Araki
scheme is described as follows.

Key Generation. The secret key consists of primes p, q
and u ∈ R×. The public key consists of N = pq and h :=
−(uT )−1u−1 ∈ R.

Signature Generation. LetM ∈ R be amessage such that
M = MT . Choose ρ ∈ R× randomly. We compute C1 :=
ρ−1M + ρT , C2 := u(ρ−1M − ρT ) ∈ R. (C1,C2) is a
signature.

Verification. IfCT
1 C1+CT

2 hC2 = 4M then the signature
is accepted, otherwise rejected.

Remark 3.1. The security of Sato-Araki scheme is based
on the difficulty of solving the equation over R with respect
to X1,X2,

XT
1 X1 + XT

2 hX2 = 4M (5)

for any M ∈ R. Since the signer knows p and q, the
signer can find a solution of (5) by the procedure of above
signature generation.

3.1 Attacks against Sato-Araki scheme
The problem of solving the equation (5) is reduced to the
problem of solving a equation over R,

XT X + h ≡ 0 mod N .

However, Coppersmith proposed two efficient attacks [5]
by using special property of a quaternion algebra without
the factorization of N .

3.1.1 Coppersmith’s first attack
The first attack of Coppersmith is a chosen message
attack. For i = 1, 2, 3, let

(
C(i)
1 ,C(i)

2

)
be signatures formes-

sages Mi. The following fact is the key of the attack: For
i = 1, 2, 3,(

C(i)
1

)T
uC(i)

2 are symmetric matrices, (6)

where u is a component of the secret key. Then these
span a subspace

{
δ = δT ∈ R} = Span{i, j, ij} of rank

3 with high probability. One can compute X ∈ R
satisfying

(
C(i)
1

)T
XC(i)

2 are symmetric matrices (i = 1, 2, 3),

which is determined up to scalars. Therefore, X is propor-
tional to u. It is not difficult to compute u from X.

3.1.2 Coppersmith’s second attack
The second attack of Coppersmith is based on the exis-
tence of the following algorithm.

Proposition 3.1. ([1]) Let N be an odd positive integer
and f (x, y) a bivariate quadratic polynomial over Z/NZ.
�( f ) denotes the discriminant of f defined as in [1]. If
gcd(�( f ),N) = 1, then there exists an algorithm which
gives a solution to f (x, y) = 0 with probability 1 − ε,
and requires O(log(ε−1 logN) log4N) arithmetic opera-
tions on integers of size O(logN) bits.

If x, y ∈ R are written as

x = x0 · 1 + x1 · i + x2 · j + x3 · ij,
y = y0 · 1 + y1 · i + y2 · j + y3 · ij,

then the equation over R,

xT x + yT hy = 4M (7)

is rewritten by three quadratic equations with respect to
8 variables x0, x1, . . . , y3. By a simplicity of equation (7)
and property of quaternion algebra, the problem of solving
the system of these quadratic equations can be reduced
to that of some bivariate quadratic equations. Therefore a
signature can be forged from the above proposition.

4 Our proposal: extension of HS scheme
HS scheme [12] is a signature scheme having properties
of both birational permutation scheme and Sato-Araki
scheme. Since the security of HS scheme is based on
the difficulty of integer factorization, the scheme defined
over the ring Z/NZ. However, we want to redefine HS
scheme as a scheme in MPKC. Therefore, in this section,
we define HS scheme in more general fashion such that
our definition involves both the original HS scheme and
our proposed scheme.

4.1 Non-commutative rings
Let L be either a field K and Z/NZ. In this paper, we say
that a L-algebra R is a non-commutative ring only if

1. R is a free module over L with finite rank, and
2. R is non-commutative.
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Example 4.1. (Quaternion algebra) For a ∈ L×, a non-
commutative ring QL(a) is defined as follows:

(Set) QL(a) = L · 1 ⊕ L · i ⊕ L · j ⊕ L · ij,
(Product) i2 = a, j2 = −1, ij = −ji.

QL(a) is a free module over L with rank 4. This is called
a quaternion algebra. When L = Z/NZ and a = −1, R
coincides with the quaternion algebra used in Sato-Araki
scheme. If L = GF(q) and a = −1, we write simply Qq
instead of QL(a). QL(a) is embedded into a matrix ring:

ι : QL(a) 	 a1 + a2i + a3j + a4ij


→
(

a1+ a2
√−1a3+a4

√−1
−a3+ a4

√−1a1− a2
√−1

)
∈M

(
2, L

[√−1
])

.

(8)

If QL(a) is identified with the image of ι, any element in
QL(a) is closed by transpose operation in QL(a). For v =
c1 + c2i+ c3j+ c4ij ∈ QL(a), the main involution v∗ of v is
defined by

v∗ = c1 − c2i − c3j − c4ij ∈ QL(a). (9)

Let R be a non-commutative ring over L and r its rank
over L. Then there exists an L-linear isomorphism,

φ : Lr ∼−→ R. (10)

Using this isomorphism φ, an element α ∈ R can be
represented by r elements in L.

4.2 HS scheme over L
Let R be a non-commutative ring over L of rank r and fix φ

as in (10). In the rest of this paper, assume that R is realized
as a subring of the matrix ringM(s, L) for some s ∈ N, and
closed by the transpose operation.
Let ñ be a positive integer. HS scheme deploys non-

commutative multivariate polynomials as a central map:

g̃k(x1, . . . , xñ) =
k−1∑
i=1

xTi α
(k)
ik xk +

∑
1≤i,j≤k−1

xTi α
(k)
ij xj

+
∑
1≤i≤k

β
(k)
i xi + γ (k) (k = 2, 3, . . . , ñ),

where α
(k)
i,j ,β

(k)
i , γ (k) ∈ R. Note that g̃k is essentially a poly-

nomial of k variables. The central map of HS scheme is
constructed by

G̃ = (
g̃2, . . . , g̃ñ

)
: Rñ → Rñ−1

The key generation, the signature generation and the
verification are described as follows.

Key Generation. The secret key consists of R, the cen-
tral map G̃ and two affine transformations A1 : Lm →

Lm (m = rñ − r), A2 : Ln → Ln (n = rñ). The pub-
lic key consists of L and the composed map F̃ = A1 ◦
φ−ñ+1 ◦ G̃ ◦ φñ ◦ A2 : Ln → Lm, which is a system of m
quadratic polynomials of n variables over L. We denote by

F̃ =
(
f̃r+1, . . . , f̃n

)T
.

Signature Generation. Let M ∈ Lm be a message. We
compute A = A−1

1 (M), B = G−1(A), C = A−1
2 (B) in

this order. The signature of the message is C ∈ Ln. Here
B = G̃−1(A) is computed by the following procedure.

Step 1 Choose a random element b1 ∈ R.
Step 2 For k = 1, . . . , ñ, do the following operation

recursively.

g̃k is a non-commutative polynomial with
respect to x1, . . . , xk . By the substitution
x1=b1, . . . , xk−1=bk−1 to g̃k , a
non-commutative polynomial ḡk of one
variable xk with at most 1 degree is obtained.
We compute the solution bk ∈ R of

ḡk(xk) = ak (11)

where A = (ai) ∈ Rm̃. (If there is no solution,
return to Step 1.)

Step 3 Set B = (b1, . . . , bñ).

Verification. If F̃(C) = M then the signature is accepted,
otherwise rejected.
This scheme is denoted by HS(R; ñ).

Remark 4.1. In general, it is difficult to solve a non-
commutative equation (11) directly. However, if we fix a
L-basis of R then it makes a new system of (commutative)
linear equations with respect to the basis, which is easy to
be solved in general. If R has an efficient arithmetic oper-
ation, the equation (11) can be solved more efficiently. For
example, in the case of a quaternion algebra QL(a), its
realization (8) enables to compute its arithmetic operation
efficiently.

5 Security analysis of the extended HS scheme
In the last section, we defined HS scheme over a
non-commutative ring R. Here, we can take a non-
commutative ring over a finite field K or a ring Z/NZ. If
R is defined over Z/NZ, then the HS scheme becomes the
original one. On the other hand, our proposed scheme is
the HS scheme where R is defined over a finite field K .
First, we analyze the security of the extendedHS scheme

for attacks against the original Birational Permutation
scheme and Sato-Araki scheme. As such attacks, there are
the attack of Coppersmith, Stern and Vaudenary (CSV)
attack [6] and the attacks of Coppersmith [5] has been
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analyzed [12]. These attacks can be extended those against
HS scheme over Z/NZ. Moreover, the extended attacks
can be changed into attacks against the extended HS
scheme over K easily. In this section, we analyze the secu-
rity for these attacks against the extended HS scheme
over K .

5.1 Security against CSV attack
In Birational Permutation scheme, only gn includes the
variable xn in all the components of the central map
G = (

g2, g3, . . . , gn
)
. Therefore we can extract the term of

gn from linear combinations of g2, g3, . . . , gn by eliminating
xn. The components of the public key F = (

f2, f3, . . . , fn
)

are expressed as linear combinations of g2 ◦ A2, . . . , gn ◦
A2 where A2 is an affine transformation in the private
key. Similarly as in the case of the central map, we can
also extract the term of gn ◦ A2 from the components.
Then we have the decomposition (3) as we explained
in § 2.1.
In HS scheme, only g̃n includes the non-commutative

variable xn in all the components of the central map
G̃ = (

g̃2, g̃3, . . . , g̃n
)
. However, from linear combinations

of φ−ñ+1 ◦ G̃ ◦ φñ we can not eliminate xn by the method
in § 2.1 because the non-commutative variable xn cor-
responds to r (commutative) variables. Therefore it is
difficult to apply the CSV attack to HS scheme.

5.2 Security against Coppersmith’s first attack
The first attack is applicable for Sato-Araki scheme
because a simple relation (6) holds for a part u of the secret
key. However in HS scheme, a simple relation like as (6)
for the secret key is not expected. Therefore it is difficult
to extend this attack to HS scheme.

5.3 Security against Coppersmith’s second attack
There exists an efficient algorithm solving a system of
bivariate quadratic equations modulo N (Proposition 3.1)
and a system of equations appearing in Sato-Araki scheme
can be reduced to some of bivariate quadratic equations
modulo N . However HS scheme has many variables, and
a system of equations appearing in the scheme is not
expected to be reduced to a simple system of equations
even if L = K . Therefore this attack is not more effi-
cient than the direct attack which find a solution of
a system of equations by XL, Gröbner basis algorithm,
etc.

6 Reduction of Uchiyama and Ogura to Rainbow
Uchiyama andOgura [21] pointed out that the original HS
scheme which is defined over Z/NZ can be rewritten by
Z/NZ-analogue of Rainbow where the original Rainbow
[9] is a multilayer variant of the Unbalanced Oil and Vine-
gar signature scheme [13]. This implies that the attacks
against Rainbow are applicable to HS scheme.

6.1 Original Rainbow and its analogue
To deal with both the original Rainbow and its analogue
over a finite field, we prepare Rainbow defined over L
which is either K or Z/NZ.
At first, we define parameters which determine the layer

structure of Rainbow. Let t be the number of layers of
Rainbow. Let v1, . . . , vt+1 be a sequence of positive t + 1
integers such that

0 < v1 < v2 < · · · < vt < vt+1.

For h = 1, . . . , t, the sets Vh,Oh of indices of Vinegar and
Oil variables of the h-th layer of Rainbow is defined by

Vh={1, 2 . . . , vh} , Oh={
vh+1, vh+2, . . . , vh+1−1, vh+1

}
.

The number of elements inOh and Vh are vh+1 − vh and
vh, respectively, and denote oh = vh+1 − vh. Note that the
smallest integer in O1 is v1 + 1. We define n = vt+1 which
is the maximum number of the variables used in Rainbow.
Rainbow consists of t layers of multivariate polynomi-

als of n variables. For h = 1, 2, . . . , t, the h-th layer of
Rainbow deploys the following system of oh multivariate
polynomials:

gk(x1, . . . , xn) =
∑

i∈Oh,j∈Vh

α
(k)
i,j xixj +

∑
i,j∈Vh, i≤j

β
(k)
i,j xixj

+
∑

i∈Vh+1

γ
(k)
i xi + η(k) (k ∈ Oh), (12)

where α
(k)
i,j ,β

(k)
i,j , γ

(k)
i , η(k) ∈ L. Note that gk is essen-

tially a polynomial of vh + oh variables. We call variables
xi (i ∈ Oh) and xj (i ∈ Vj) the Oil and Vinegar vari-
able, respectively. Then the central map of Rainbow is
constructed by

G = (
gv1+1, . . . , gn

)
: Ln → Ln−v1 .

Note that one of preimage of any element of Ln−v1

through G can be computed easily. For a system of oh
equations for the h-th layer,

gk
(
b1, . . . , bvh , xvh+1, . . . , xvh+1

) = ak (k ∈ Oh)

becomes oh linear equations of oh variables for any(
avh+1, . . . , avh+1

) ∈ Loh and (b1, . . . , bvh) ∈ Lvh . The
values of Oil variables in the h-th layer obtained by solv-
ing this linear equations are utilized as that of Vinegar
variables in the (h + 1)-th layer.
We describe the key generation, the signature genera-

tion and the verification of Rainbow in the following.

Generation. The secret key consists of the central map
G and two affine transformations A1 : Lm → Lm (m =
n − v1), A2 : Ln → Ln. The public key consists of L,
which is either a field K or Z/NZ, and the composed map
F = A1 ◦ G ◦ A2 : Ln → Lm, which is a system of m
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quadratic polynomials of n variables over L. We denote by
F = (

fv1+1, . . . , fn
)T.

Signature Generation. Let M ∈ Lm be a message. We
compute A = A−1

1 (M), B = G−1(A), C = A−1
2 (B) in this

order. The signature of the message is C ∈ Ln. Remark
that B = G−1(A) can be easily computed by the above
property of G.

Verification. If F(C) = M then the signature is accepted,
otherwise rejected.
This scheme is denoted by Rainbow(L; v1, o1, . . . , ot),

and we call v1, o1, . . . , ot a parameter of Rainbow.

6.2 Reduction of HS scheme to Rainbow
Uchiyama and Ogura wrote down φ−ñ+1 ◦ G̃ ◦ φñ for
HS(Z/NZ, ñ) and showed the following [21].

Proposition 6.1. Let R be a non-commutative ring over
Z/NZ of rank r. Let F̃ be a public key of HS(R; ñ). Then F̃

becomes a public key of Rainbow(Z/NZ;
ñ︷ ︸︸ ︷

r, . . . , r).

Remark 6.1. The above proposition defines a correspon-
dent between signature schemes,

HS(R; ñ) � Rainbow(Z/NZ;
ñ︷ ︸︸ ︷

r, . . . , r)

Secret Key: (A1, G̃,A2) 
→ (A1,φ−ñ+1 ◦ G̃ ◦ φñ,A2)

Public Key: F̃ 
→ F̃ .

Using this notation, the following correspondence holds.

OSS scheme � Rainbow(Z/NZ; 1, 1),
Birational Permutation scheme � Rainbow(Z/NZ; 1, . . . , 1),

Sato-Araki scheme � Rainbow(Z/NZ; 4, 4).

The argument of Uchiyama and Ogura in [21] is also
valid for the case of HS scheme defined over field K .
Therefore we have

Proposition 6.2. Let R be a non-commutative ring over
K of dimension r. Let F̃ be a public key of HS(R; ñ). Then F̃

becomes a public key of Rainbow(K ;
ñ︷ ︸︸ ︷

r, . . . , r).

Remark 6.2. The above proposition shows that HS
scheme is another way of construction of the uniformly-
layered Rainbow, where “uniformly-layered" means all
components in the parameter of Rainbow are equal. If the
arithmetic operation of non-commutative ring R is effi-
cient, then the signature generation of HS scheme may be
more efficient than that of the corresponding Rainbow.

6.3 Security analysis for attacks against Rainbow
Proposition 6.2 implies that attacks against Rainbow are
applicable to the extended HS scheme over K . In this
section, we analyze security of the extended HS scheme
against well-known attacks against Rainbow.

6.3.1 Attacks against Rainbow
Here, we summarize the known attacks against Rainbow
that have been reported in previous papers, and we ana-
lyze the security against each attack. The known relevant
attacks against Rainbow are as follows.

(1) Direct attacks [2,23],
(2) UOV attack [13,14],
(3) MinRank attack [3,11,22],
(4) HighRank attack [10,11,17],
(5) Rainbow-Band-Separation (RBS) attack [10,16],
(6) UOV-Reconciliation (UOV-R) attack [10,16].

The direct attacks try to solve a system of equations
F(X) = M from public key F and (fixed)messageM [2,23].
By contrast, the goal of the other attacks is to find a part
of the secret key. In the case of a UOV attack or HighRank
attack, for example, the target Rainbow with parameters
v1, o1, . . . , ot is then reduced into a version of Rainbow
with simpler parameters such as v1, o1, . . . , ot−1 without
ot . We can then break the original Rainbow with lower
complexity. To carry out a reduction we need to find (a
part of ) a direct sum decomposition of vector space Kn,

Kn = Kv1 ⊕ Ko1 ⊕ · · · ⊕ Kot , (13)

because expressingKn in an available basis enables return-
ing the public key to the central map. In fact, if we
can decompose Kn = W ⊕ Kot for a certain W that
has a coarser decomposition than (13) then the security
of Rainbow(K ; v1, o1, . . . , ot) can be reduced to that of
Rainbow(K ; v1, o1, . . . , ot−1). There are two methods for
finding this decomposition:

(1) Find a simultaneous isotropic subspace of Kn.
Let V be a vector space over K , and let Q1 be a quadratic
form on V . We determine that a subspace W of V is
isotropic (with respect to Q1) if

Q1(v1, v2) := Q1(v1 + v2) − Q1(v1) − Q1(v2) = 0.

for any v1, v2 ∈ W . In addition, we assume that V is also
equipped with quadratic formsQ2, . . . ,Qm. We determine
that a subspaceW of V is simultaneously isotropic ifW is
isotropic with respect to all Q1, . . . ,Qm.

In Rainbow, m quadratic forms on Kn are defined by
the quadratic parts of the public polynomials of F . Note
that the subspace Kot appearing in (13) is a simultane-
ous isotropic subspace of Kn. If we find a simultaneous
isotropic subspace, the basis of Kot is then obtained and
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the above attack is feasible. The UOV, UOV-R and RBS
attacks are classified as being of this type.

(2) Find a quadratic form with the minimum or second
maximum rank.
When the quadratic part of the k-th public polynomial of
F in Rainbow is expressed as

n∑
i=1

n∑
j=i

a(k)
ij xixj,

we associate it with a symmetric matrix Sk = A + AT,
where A =

(
a(k)
ij

)
. We define

A = SpanK {Sk | k = v1 + 1, . . . , n} , (14)

which is a vector space over K spanned by matrices
Sv1+1, . . . , Sn. For example, if we find a matrix of rank
v2 = v1+o1 inA, there is a high probability that the image
of this matrix coincides with Kv1 ⊕ Ko1 appearing in (13).

Therefore, we obtain the decomposition of Kn = (Kv1 ⊕
Ko1) ⊕ W ′ for some W ′ that is a coarser decomposi-
tion than (13). The MinRank and HighRank attacks are
classified as being of this type.
The details of abovementioned six attacks can be found

in the literature [16].

6.4 Security against known attacks
6.4.1 UOV attack
Regard L2 as the part of a linear transformation of A2 and
placeOt = L−1

2 ({0}n−ot × Kot ) as the subspace of Kn cor-
responding toKot appearing in (13). TheUOV attack finds
a non-trivial invariant subspace of W12 = W1W−1

2 that is
included in Ot for invertible matrices W1,W2 ∈ A. The
analysis in [13] shows that the probability that W12 has a
non-trivial invariant subspace included in Ot is equal to
qn−2ot . This is obtained by the following lemma.

Lemma 6.1. ([8] Lemma 3.2.4) Let J : Kn → Kn be an
invertible linear map such that

1. there exist two subspaceO′ ⊂ V ′ of Kn where the
dimensions ofO′ and V ′ are o′ and v′, respectively,
and

2. J(O′) ⊂ V ′.

Then the probability that J has a non-trivial invariant
subspace inO′ is no less than qo′−v′ .

This lemma is also available for the extended HS scheme
through Proposition 6.2. This means that the complexity
is the same as that of the corresponding Rainbow. From
the complexity of the UOV attack [13] and Proposition 6.2
we have

Proposition 6.3. Let a = log2(
K). HS(R; ñ) has a
security level of l bits against the UOV attack if

rñ − 2r ≥ l/a + 1.

Remark 6.3. The UOV attack is more efficient in the
case of balanced Oil and Vinegar than in the case of gen-
eral Unbalanced Oil and Vinegar. Therefore, we should not
choose ñ = 2 in the extended HS scheme, otherwise, HS
scheme corresponds to a balanced Oil and Vinegar scheme.

6.4.2 MinRank attack
In the MinRank attack, we solve MinRank(v2) for A. If
there is a non-trivial P ∈ A for a v ∈ Kn such that
Pv = 0, there is high probability that P is a solution for
MinRank(v2). For v ∈ Kn, the probability that a non-trivial
P ∈ A exists such that Pv = 0 is roughly q−v2 . This is also
true for the extended HS scheme. Therefore, from [11], we
have the following proposition:

Proposition 6.4. Let a = log2(
K). Assume that rñ.
Then HS(R; ñ) has a security level of l bits against the
MinRank attack if

2r ≥ l/a.

6.4.3 HighRank attack
In the HighRank attack, we have an element W ∈ A such
that rank(W ) = vt . For anyW ∈ A, the probability that its
rank is equal to vt is q−ot . This is also true for the extended
HS scheme. Therefore, from [11], we have the following
proposition:

Proposition 6.5. Let a = log2(
K). Assume that n ≥
m. Then HS(R; ñ) has a security level of l bits against the
HighRank attack if

r ≥ l/a.

6.5 Direct attacks and others
From Proposition 6.2, the public key of the extended HS
scheme is exactly equal to that of the corresponding Rain-
bow. Therefore, the complexity against the direct attacks
is estimated to be the same for the extended HS scheme
as for the original Rainbow corresponding to it. Similarly,
the complexities against the RBS and UOV-R attacks are
estimated to be the same for the extended HS scheme as
for the corresponding Rainbow.
The complexities of the direct, RBS and UOV-R attacks

were discussed by Petzoldt et al. [16], and we follow their
data regarding the complexities of these attacks. In partic-
ular, the complexities of the direct and UOV-R attacks are
equivalent.
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Table 1 Security level against attacks on the extended HS
scheme over R defined over GF(256) and with ñ = 3

r 10 11 12 13

UOV (bits) 72 80 88 96

MinRank (bits) 160 176 192 218

HighRank (bits) 80 88 96 104

Direct, UOV-R, RBS (bits) 93 99 104 110

Security level (bits) 72 80 88 96

7 Total security and secure parameters
Based on the security analysis in the last section, we try to
present secure parameters and their length for HS(R; ñ)

where R is a non-commutative ring of rank r over K =
GF(256).We adopt the parameters of Petzoldt et al. in [16]
for estimating the security against the direct, UOV-R and
RBS attacks. For other attacks, from Propositions 6.3, 6.4
and 6.5, the following criteria are used for l-bit security
against these attacks: Let a be the bit length of q and r
the dimension of R. For HS(R; ñ), we have n = rñ, m =
r(ñ − 1) and we assume that n > m.

1. UOV attack n − 2r ≥ l/a + 1.
2. MinRank attack 2r ≥ l/a.
3. HighRank attack r ≥ l/a.

From the above condition of UOV attack, ñ ≥ 3
is required in order to design a secure HS scheme.
Table 1 presents the complexity against each attack for the
extended HS scheme over a non-commutative ring R over
GF(256) with ñ = 3. Table 1 shows that UOV attack is the
strongest among all analyzed attacks.

8 Efficiency of HS scheme
Any non-commutative ring R can be embedded in a
matrix ring M(l,K) for some positive integer l. If we
can choose a small l, the arithmetic operation of R
becomes efficient. In the signature generation in our pro-
posed scheme, we have to solve several systems of linear
equations of the form, A.X = B (A,B ∈ M(l,K)) with

respect to variable matrixX ∈ M(l,K). If we use Gaussian
elimination to solve the above linear equations, the num-
ber of field multiplication in solving the linear equations
has O(l3).
On the other hand, in the signature generation in the

corresponding Rainbow the number of field multiplica-
tion has O(d3) where d is the dimension of R because of
Proposition 6.2. Thus, if l < d is satisfied, the signature
generation of our proposed scheme is more efficient than
that of the corresponding Rainbow.

8.1 Efficiency in the case of group ring of dihedral group
To compare the efficiency of signature generation in HS
scheme and the corresponding Rainbow, we prepare dihe-
dral group and its realization. Let m be a positive integer.
M1 = (aij),M2 = (bij) ∈ M(m,K) is defined as

aij =
{
1 if j − i ≡ 1 (modm),
0 otherwise, bij =

{
1 if j + i ≡ 1 (modm),
0 otherwise.

We write Dm for the group generated by M1 and M2.
Dm is isomorphic to the dihedral group with 2m elements
[7]. K[Dm] denotes the group ring with coefficients in K
and associated to Dm, then, it is a non-commutative ring
of dimension 2m−1, realized inM(m,K). K[Dm] is closed
by a transpose operation because inverse operation on
Dm is closed in Dm. Therefore we can use K[Dm] as a
base ring in HS scheme. Table 2 compares the efficiency
of the signature generation in HS scheme and the corre-
sponding Rainbow. The non-commutative rings used in
HS schemes in the table are chosen by K[Dm] where K =
GF(256) and m = 10, 11, 12, 13. The number of layers in
each HS scheme is chosen by 3, and then the correspond-
ing Rainbow of HS(K[Dm] ; 3) becomes Rainbow(K ; r, r, r)
with r = 2m−1 by Proposition 6.2. We estimate the num-
ber of multiplication of GF(256) for efficiency compari-
son. Msig(HS(R; 3)) (resp. Msig(R(GF(256); r, r, r))) stands
for the number of multiplications in the signature gener-
ation in HS(R; 3) (resp. Rainbow(GF(256); r, r, r)). Table 2

Table 2 Efficiency comparison of HS schemewith the corresponding Rainbow (in terms of the number of multiplications
in GF(256))

HS(R, 3) HS(K[D10] , 3) HS(K[D11] , 3) HS(K[D12] , 3) HS(K[D13] , 3)

Dimension of R 19 21 23 25

Matrix size 10 11 12 13

Msig(HS(R; 3)) 25353 33233 42581 53521

Corresponding Rainbow
R(19, 19, 19) R(21, 21, 21) R(23, 23, 23) R(25, 25, 25)

R(GF(256); r, r, r)

Security level (bits) 72 80 88 96

Msig(R(GF(256); r, r, r)) 50198 66766 86618 110050

Ratio 50.5% 49.8% 49.2% 48.6%
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shows that the signature generation of HS scheme is about
50% faster than that of the corresponding Rainbow.

9 Concluding remarks
We analyzed the security of the extended HS scheme,
and presented secure parameters of the extended HS
scheme. The attacks we analyzed the security are the
attack of Coppersmith, Stern and Vaudenary for Birational
Permutation scheme, two attacks of Coppersmith for
Sato-Araki scheme and attacks against Rainbow. Based on
the security analysis, we estimate secure parameters of
the extended HS scheme. If a non-commutative ring used
in the extended HS scheme is chosen by the group ring
associated to dihedral group, the speed of the signature
generation can be accelerated by about 50% in comparison
with the corresponding Rainbow.
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