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Abstract

Minimal polynomial

In this paper, we grasp an inverse eigenvalue problem which constructs a tridiagonal matrix with specified multiple
eigenvalues, from the viewpoint of the quotient difference (qd) recursion formula. We also prove that the
characteristic and the minimal polynomials of a constructed tridiagonal matrix are equal to each other. As an
application of the gqd formula, we present a procedure for getting a tridiagonal matrix with specified multiple
eigenvalues. Examples are given through providing with four tridiagonal matrices with specified multiple eigenvalues.
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1 Introduction

One of the important problems in linear algebra is to
construct matrices with specified eigenvalues. This is an
inverse eigenvalue problem which is classified in Struc-
tured Inverse Eigenvalue Problem (SIEP) called in [1].
The main purpose of this paper is to design a procedure
for solving an SIEP in the case where the constructed
matrix has tridiagonal form with multiple eigenvalues,
through reconsidering the quotient difference (qd) for-
mula. It is known that the qd formula has the applications
to computing a continued fraction expansion of power
series [5], zeros of polynomial [3], eigenvalues of a so-
called Jacobi matrix [9] and so on. Though the book [9]
refers to an aspect similar to in the following sections,
it gives only an anticipated comment without proof in
the case of multiple eigenvalues. There is no observa-
tion about numerical examples for verifying it. The key
point for the purpose is to investigate the Hankel deter-
minants appearing in the determinant solution to the qd
formula with the help of the Jordan canonical form. In
this paper, we give our focus on the unsettled case in
order to design a procedure for constructing a tridiagonal
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matrix with specified multiple eigenvalues, based on the
qd formula. The reason why the sequence of discussions
was stopped is expected that multiple-precision arith-
metic and symbolic computing around the published year
of Rutishauser’s works for the qd formula were not suf-
ficiently developed. The qd formula, strictly speaking the
differential form of it, for computing tridiagonal eigenval-
ues acts with high relative accuracy in single-precision or
double-precision arithmetic [7], while, actually, that serv-
ing for constructing a tridiagonal matrix gives rise to no
small errors. Thus, the qd formula serving for construct-
ing a tridiagonal matrix is not so worth in single-precision
or double-precision arithmetic. In recent computers, it is
not difficult to employ not only single or double preci-
sion arithmetic but also arbitrary-precision arithmetic or
symbolic computing. In fact, an expression involving only
symbolic quantities achieves exact arithmetic on the sci-
entific computing software such as Wolfram Mathemat-
ica, Maple and so on. Numerical errors frequently occur in
finite-precision arithmetic, so that a constructed tridiag-
onal matrix probably does not have multiple eigenvalues
without symbolic computing. The resulting procedure
in this paper is assumed to be carried out on symbolic
computing.

This paper is organized as follows. In Section 2, we
first give a short explanation of some already obtained
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properties concerning the qd formula. In Section 3, we
observe a tridiagonal matrix whose characteristic poly-
nomial is associated with the minimal polynomial of a
general matrix through reconsidering the qd formula.
The tridiagonal matrix essentially differs from the Jacobi
matrix in that it is not always symmetrized. We also
discuss the characteristic and the minimal polynomi-
als of a tridiagonal matrix in Section 4. In Section 5,
we design a procedure for constructing a tridiagonal
matrix with specified multiple eigenvalues, and then
demonstrate four tridiagonal matrices as examples of
the resulting procedure. Finally, in Section 6, we give
conclusion.

2 Some properties for the qd recursion formula
In this section, we briefly review two theorems in [4]
concerning the qd formula from the viewpoint of a gener-
ating function, the Hankel determinant and a tridiagonal
matrix.

Let us introduce the Hankel determinants H{"), H;”), e
given in terms of a complex sequence { f,}5° as

fn fn+1 fn+s—1
) fn+1 fn+2 fn+s
HZ =1 co N (1)
fn+s—1 fn+s o fn+25—2
s=12,..., n=0,1,...,

where H(_"l) = 0and H(()") =1forn =0,1,.... Moreover,
let F(z) be a generating function associated with {f,}§° as

F@) =) fid' =fotfhz+hz®+-. @)

n=0

Let us consider that F(z) is a rational function with
respect to z with a pole of order /y > 0 at infinity and finite
poles z; # 0 of order [ for k = 1,2, ..., L. Then the sum
of the orders of the finite polesis/ = I; + I, +-- -+, and
F(z) is factorized as

G(2)
E—z)(z—z)2 - (z— 2zl

F(z) = Go(2) +

where G(z) is a polynomial of degree at most /, and Gy (z)
is a polynomial of degree [y if [y > 0, or Go(z) = 0iflp = 0.
The following theorem gives the determinant solution to
the qd recursion formula

(n+1) (n+1) () ()

qs +e_ 1 =4qs +e,
s=12,..., n=0,1,...,
qﬁ”*”eE”“) :qﬁﬂe?), s=12,..., n=0,1,....

(4)
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Theorem 1. ([4], pp. 596, 603, 610) Let F(z) be factor-
ized as in (3). Then it holds that

H" =0, s=Il+11+2..., n=h+1l+2,....

(5)
Let us assume that
H" #£0, s=12,...,I, n=0,1,.... (6)
Then the qd formula (4) with the initial settings
e(()”):O, qﬁ")zjﬂ, n=0,1,... (7)
Jn
admits the determinant solution
(n+1) ; ;(n)
H, H
;n)=ﬁ, S=1,2,...,l, Vl=0,1, 5
H{H” 4
(8)
(n) pr(n+1)
H ' ~H
e = Ls_ll, s=0,1...,,, n=0,1,....
HS(}’I)HS(VI"F )
)

From (9) with (5), it follows that eE") =0forn =01,

.... Moreover, it turns out that qﬁ”) and e§”) fors=1+1,
[+2,...andn =0,1,... are not given in the same form
as (8) and (9).

Let us introduce s-by-s tridiagonal matrices,

() _(n) (n)

9 491 €
(n) (n) -,
Ts(n) — L q" +¢ ’ , (10)
. (n) (n)
qs—les—l
W
s=1,2,...,I, n=0,1,...

with the qd variables qs(") and eﬁ"). Let I; be the s-by-s
identity matrix. Then we obtain a theorem for the charac-
teristic polynomial of Tl(").

Theorem 2. ([4], pp. 626, 635) Let F(z) be factorized as
in (3). Let us assume that HS(") satisfies (6). Forn =0,1,...,
it holds that

! ! l
det <z]l - Tl(”)>:<z— zl_1> 1 (z _22—1) o (z— ZL_1> "

(11)

3 Tridiagonal matrix associated with general
matrix
In this section, from the viewpoint of the characteristic
and the minimal polynomials, we associate a general M-
by-M complex matrix A with a tridiagonal matrix Tl(").
Let A1, Ay, ..., Ay be the distinct eigenvalues of A, which
are numbered as |[Aq1| > |A2] > -+ > |An]|. It is noted that
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some of [A1], [Az2], ..., |An| may equal to each other in the
case where some of 11, A2, . . ., AN are negative eigenvalues
or complex eigenvalues. Let My be the algebraic multiplic-
ity of Ax, where M = My + My +- - - + My For the identity
matrix Iy € RMM let pa(z) = det(zly; — A) be the
characteristic polynomial of A, namely,

$a@ = (2= 1)@ =" @ =M. (12)
Let us prepare the sequence {f,}° given by
fo=wlA"u, n=0,1,... (13)

for some nonzero M-dimensional complex vectors # and
w, where the superscript H denotes the Hermitian trans-
pose. Originally, fo,fi,... were called the Schwarz con-
stants, but they are usually today called the moments
or the Markov parameters [2]. Since the matrix power
series > > 1(zA)" is a Neumann series (cf. [6]), F(z) =
Yo w' (zA)"u converges absolutely in the disk D : |z| <
|A1|_1. Moreover, we derive F(z) = wH (I — zA)*1 u
which implies that F(z) is a rational function with the
denominator det(Iy; — zA) = zMp4(z71) as follows.

G(2)

(1 = M2Mi(1 — hgz)M2 ... (1 — An2)MN’
(14)

F(z) =

where G(z) is some polynomial with respect to z. It
is remarkable that the numerator G(z) may have the

same factors as the denominator (1 — Az)M1(1 —
A22)M2 ... (1= An2)™N. In other words, F(z) has the poles
Al_l, Az_l, . ,)\;,1 whose orders are equal to or less than

M1, My, ..., My, respectively.

Let us introduce the Jordan canonical form of A in order
to investigate the poles of F(z) with (13) even in the case
where A has multiple eigenvalues. Let M be the geo-
metric multiplicity of Ax which indicates the dimension of
eigenspace Ker(A — Aglpr). It is noted that My is equal
to or less than the algebraic multiplicity M. The matrix
A has M eigenvectors corresponding to A, and then the
eigenvectors, denoted by vy 1, V2, . . ., Vi aq,» Satisfy

Avij= Mgy, j=12,... , M. (15)

Hereinafter, forj = 1,2,..., My, let vi;(1) = v ;. More-
over, forj = 1,2,..., My, let v j(2), v j(3), ..., vg;(my)
denote the generalized eigenvectors associated with the
eigenvectors vg (1), where my; is the maximal integer
such that vy ;(1), v j(2), . . ., Vi j(my ;) are linearly indepen-
dent. Of course, my1 + myp + - - - + my a1, = M. Then,

the generalized eigenvectors vy ;(2), vx;(3), ..., vk;(mg;)
satisfy
Avyj() = My (D) + vi (i — 1),
i=23,...,m; j=12..., M (16)
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From (15) and (16), we derive the Jordan canonical form
of A as

vlav =7 (17)
with the nonsingular matrix
V=WV Vy) e CXM (18)
and the block diagonal matrix
J = diag(1, o, - . ., Jn) € CMM, (19)
where
Vie=(Via Vi -+ Vionm,) € CHMi, (20)
Vij = Wij(D v(2) -+ wii(my)) € CH77, - (21)
Ji = diagUk 1, Jk2s - - - Jiopm,) € CMMe, (22)
M 1
Ak . My i X My
Jkj = € C"hj> "), (23)
S
Ak

Without loss of generality, we may assume that my; >

M = 0 2 MM,
Let my = max{my1, mgo, ..., Mg} Since my; >
Mpy > -+ > Mg A, it is obvious that my = my 1. With

the help of the Jordan canonical form of A as in (17), we
get a proposition for the sequence {f,}3° in (13).

Proposition 1. Let u be the vector given by the linear
combination of the eigenvectors and the generalized eigen-
vectors of A, namely, for some constants ki ;,

N My Mg
= 3 kkjivisi). (24)
k=1 j=1 i=1
Moreover, for a vector w, let
My Mk
i =)D Kk Vig ([ — i+ Dw. (25)
j=1 i'=i
Then, the sequence {f,}3° in (13) can be expressed by
N my "
_ g n—i+1
=3 ( 1 Jat 26
=1 1=

where the binomial coefficients are 0 if n < i — 1. Also, for
suitable u and w, it holds that

i #0, i=12,...,m, k=12,...,N. (27)
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Proof From V~'AV = ] in (17), it holds that A" =
VJ"V~L. By combining it with (13) and (24), we derive
fu=wlvrvly

N My Mg

=33 kW VIV ).

k=1 j=1 i=1

(28)

Let pg,; be the column number in which vy ;(i) arranges.
Then it is obvious that Vlv (D) = e ;(i) where ey ;(i)
denotes a unit vector such that the py ;th entry is 1 and
the others are 0. Thus, it follows that

N My Mij

Sn= Z Z Z ki W VI e (i)

k=1 j=1 i=1

(29)

Since J is the block diagonal matrix, the matrix /” and
its small blocks (J;)" are also so. It also turns out that
(k)" is upper triangle. So, it is worth noting that J" ey ; (i)
becomes the py;;th column vector of J” and the zero-

entries arrange in except for its oy 1th, pxjath, ..., prjith
rows. The Jordan blocks Ji ; can be decomposed as
]k,j = )\klmk_j + Emk,jr (30)
01
0’ My X Mg

Em,, = € R/ XMk (31)

1

0

It is emphasized that E,,, ; is a nilpotent matrix whose i'th
power becomes the zero-matrix O for i/ > M. Thus,
(k)" can be expressed as

Wlk,/'

n i g
Uk,j)n — Z (l/ - 1))\2 i+1 (Emk,j)L 1

i'=1

(32)

where (Eka)O = Imk,,.. Let us introduce an my -
dimensional unit vector e(i) which is regarded as a part
of exj(i). Then, by taking account that (Emk,].)"/_le(i) =
e(i —i' + 1) in (32), we derive

i

* n —i . .

i'=1

(33)

Since it holds that Ve ;(i — i’ + 1) = v ;(i — i + 1), by
combining it with (29) and (33), we therefore have

N My Mkj

For=) 23 krgaw v — i+ 1)

n n—i'+1
X (i’ _ 1))»,( .

(34)
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By writing down two summations, we get

N My

EDIS [Kk,j,leVk,j(l) ('S)/\Z

k=1 j=1
+ Kk (wH o) (Z>AZ +wHy (1) (’11 ) x;jl)
+ K3 (w”vk,(3)< )AZ + Wy (2) (”)Azl

1
n n—2
+vak,,(1)(2>,\k )

n
+ Kicjmy (WHVk,j(mk,j) (0> Ak

+ whv j(myj — 1)( )A" !

NS WHVk,j(l)< n >Azmk,/+1>j| '
my;— 1

Moreover, by paying our attention to the binomial coeffi-
cients, we can rewrite f, as

N

My
Jn = Z (S)AZ Z (Kk,/’.IWHVk,j(l) + Kk,j,2WHVk,j(2)

k=1 j=1
+ o Kk JWHVk,j(mk,j)>

My
n _ . .
+ (I)A,’j N (Kk WG 1) + kW Ve, 2)
j=1

o K W Vi g — 1))

_|_

M
n n—my j+1
+< )Ak / ZKkviJnk,,-WH"k,i(l)

myj— 1

j=1
N My Mij
Z ( ) ZZKkuWHVk}(l_l‘f'l)
k=1 j=1 i=1
My Mg
( >)L" 1X:X:/ck},vak/(z—2—{-1)
j=1 i=2
4.
( ) n—myp;+1
mk/
x Z > Wil = my+ 1)
j=1 i=my;
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From my > my jand wHkaj(i —i+1)
it follows that

= v,’:j(z‘ —i 4+ Dw,

N my My Mg
fu= Z Z Z ZKk,j,inH,j(i —i+Dw
k=1i=1 \j=1 i=7'

(35)

n n—i'+1
X (i’ _ 1))»,( .

The exchange of i for i’ in (35) brings us to (25) and (26).
For example, let us consider the case where the con-
stants ky;; are all 1. Then u becomes the sum of all the
eigenvectors and generalized eigenvectors. Moreover, let
w = VHg in (25) where a is an M-dimensional vector
with all the entries 1. Then it holds that Kk,/]inH,j(i/ —i+

Dw = e,jj(i’ — i+ a = 1. Thus, it is concluded that
ki 7 0. The above discussion suggests that there exists at
least a pair of # and w for satisfying (27). O

Proposition 1 leads to a theorem concerning the gener-
ating function F(z) with the moments f;, = wH A"y,

Theorem 3. Let F(z) be the generating function with the
moments f,, = W A"u. Then, F(z) converges absolutely in
the disk D : |z| < |A1|”Y, and F(z) is expressed as

Ck,Z
Fl) = Z Z 36)
k=1 i=1 (1= aa2)"
Especially, if AN = O, then F(z) is expressed as
F(z) =cng +enpz+ -+ CNmNZmN_l
N-1 mp ck Z
+ : 37
; ; (1= 22)" (37)

Let us assume that (27) holds for suitable u and w. If
AN # O, then F(z) has the finite poles Al_l, )\2—1, cees )&1 of
the orders my, ma, . . ., my, respectively, and the sum of the
ordersism = my+my+- - -+mpn. I[f AN = O, then F(z) has
the pole of the order my — 1 at infinity and the finite poles
Afl,kgl, .. ,)»;,171 of the orders my, my, ..., mn, respec-
tively, and the sum of the orders of all the finite poles is
m — mp.

Proof. By substituting f, in (26) into F(z) in (2), we get

N my

>3, (z (7 )

k=1 i=1
N my
- Cri 2" ) @39
i—1
n=i—1

k=1 i=1

F(z) =
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By letting n = n' + i — 1, we derive

Nk . 2 (n+i—1
F)=) > ! <Z ( i )(Am”) :
k=1 i=1 n'=0
(39)
It is noted that, for |z| < 1,
9] I
-1 / 1
> (" A N (40)
i—1 1 -2z
n'=0

From (39) and (40), it turns out that F(z) converges abso-
lutely in the disk D : |z| < |A1]|~!. Simultaneously, we have
(36) for z € D. It is obvious that (36) with Axy = 0 becomes
(37). Moreover, (36) and (37) immediately lead to the latter
half concerning the poles of F(z). O

Let ¥4 (2) be the polynomial whose degree is the small-
est such that ¥4(A) = O. Here 4(z) is called the
minimal polynomial of A. Let us recall here that the max-
imal dimension of the Jordan blocks J1,/k2, - . -»Jk M,
corresponding to Ax is my. So, Y4 (z) is representable as

Ya(2) = (z— 1) (z—21)"™ - (z = AN)"™.  (41)
Therefore, we have the main theorem in this section for
the relationship between the minimal polynomial of a
general matrix A and the characteristic polynomial of a

tridiagonal matrix Tl(”) .

Theorem 4. Let F(z) be given by the generating function
with the moments f,, = w' A"u. Let us assume that (6) and

(27) hold for suitable u and w. If A1 # 0,k £ 0,..., AN #
0, then it holds that
det (zlm - T,(,f’)) — VA, n=0,1,..., (42)
otherwise,
Ya(2)
det (z]m_mN T mN) =2, n=01,
(43)

Proof. 1t is remarkable that three integers L,/,[; and a
complex zj associated with the tridiagonal matrix Tl(") in
Theorem 2 are given in terms of three integers N, m, my
and a complex A associated with a general matrix A. If
AN # 0, then it follows from the latter half of Theorem 3
that L = N, [ =m, lo,[1 = m,lp = my,...,IN = my and
Z = A;l. So, from (11) and (41), we derive (42). Similarly,
ifAN =0, thenL=N—-1,l=m—mpn,lo=mn—1,]; =
mi,ly = moy,...,In—1 = mn—1 and z; = k,?l. Thus (11)
and (41) lead to (43). O



Akaiwa et al. Pacific Journal of Mathematics for Industry 2014, 6:10
http://www.pacific-mathforindustry.com/content/6/1/10

Incidentally, the editors in ([9], pp. 444—445) give a
simple example with short comments concerning the min-
imal polynomial, the Jordan canonical form of A and the
multiple poles of F(z).

4 Minimal polynomial of tridiagonal matrix
In this section, with the help of the Jordan canonical form,
we clarify the relationship of the characteristic polynomial

of the tridiagonal matrix Tl(n) to the minimal one.
For simplicity, let us here adopt the following abbrevia-
tions for matrices T\,

Ui

(44)
v
1 u
where [ = mif Ay 2 Oorl = m — my if Ay = 0. Let
Po(z) = 1and ps(z) = det(zls—Ts) fors = 1,2,...,1. Then
p1(z) is just the characteristic polynomial of T}, namely,

o1(@) = (2 —21)" (2 — A)"™ - - (z — Ap)™E,

where L = Nif Ay #2 0orL = N — 1if Ay = 0. The
following proposition gives the Jordan canonical form of
the tridiagonal matrix 7.

(45)

Proposition 2. There exists a nonsingular matrix P such

that
P YrpTP=], (46)
J = diagh,1, )21, - - Ji,1) € T, (47)
where J1,1,J21, - - -, J1,1 are of the same form as (23).
Proof. The characteristic polynomials po(2z), p1(2), - . -,
pi(z) satisfy
zpo(z) = u1po(2) + p1(2),
zps(2) = Vgps—1(2) + Us+1p5(2) + ps+1(2), (48)

s=1,2,...,1—1.

This is easily derived from the expansion of det(zl; — T)
by the sth row minors. By taking the Oth, the 1st, ..., the
(my — 1)th derivatives with respect to z in (48), we get

zDipo(2) + iD'~po(z) = u1D'po(2) + Dip:1(2),
i=01,...,m—1,
zD'ps(2) +iD' " 'ps(z) }
= VlePsfl(Z) + us+1Dl s(2) + DlPerl(Z)r
i=0,1,...,m—1, s=12,...,1—1,
(49)

where Dipy(z) denotes the ith derivative of ps(2)
with respect to z. Let p;; = (Dipo(kk),Dipl(kk),
...,Dipl_l(kk))T € CL Then, by substituting z = Ag
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in (49) and by taking account that Dip;(Ay) = Di(z —
Az — Ag)™ -+ (2 — Ay, = Ofori = 0,1,...,
my — 1, we obtain

MPri b1 = (T) Py i=0,1,...,m—1.
(50)
Moreover, it follows that
(T1) " Pro = MiPros
(T) " Pr; = McPri + Pri-1, (51)

i=12,...,m—1,

where Py ; = (1/i!)py ;. Thus, by letting P = (P10 P11 -+
Py —11Po0 P+ Poy—1 |-+ | PLoPry -+ Prm—1) €
C*!, we have (T)) TP = PJ.

Here, it remains to prove that P is nonsingular. Of
course, Pr; # O since the (i + 1)th row of Py; is
Dipi(u)/it= 1. Let Wi; = Ker (T)T — Al))" for i =
1,2,...my—1, which indicates the generalized eigenspace
of (T)7 corresponding to Ag. Then it is obvious from (51)
that ((T)) " — Axl) Pro = Oand Py € Wy 1. Eq. (51) with
i = 1also leads to that ((TZ)T - )»kll)sz‘l =0Oand Py €
Wi 2. Simultaneously, it is observed that Pr; ¢ Wy . Let
us assume that Py; € Wy 1, namely, (7)) " Pry = APy
Then, from (51), we derive Pry = O, which contradicts
with Py # O. Thus, it follows that P ; ¢ Wy 1. Similarly,
by induction for i = 2,3, ..., m; — 1 in Py, we have

Pri ¢ Wi, Wi Wi
i=12,...,m—1.

Pri€ Wiiv1,
(52)

From (52), it turns out that Py ; fori = 0,1,...,m;—1and
k = 1,2,...,L are linearly independent. Therefore, it is
concluded that P is nonsingular and the Jordan canonical
form of (T;) T is given by (46). O

Proposition 2 suggests that the minimal polynomial of
(T) T becomes
Yr(z) = (z— 1) (2= A)"™ - (z—Ap)™,  (53)
which is equal to the characteristic polynomial of 7} in
(45). If m; = my = --- = my = 1, then it is obvious that
T is diagonalizable. Otherwise, T; is not diagonalizable.
This is because multiplicity of roots in minimal polyno-
mial coincides with maximal size of the Jordan blocks.

To sum up, we have a theorem for the properties of the
tridiagonal matrix T7.

Theorem 5. The minimal polynomial of T; is equal to
the characteristic one. Also, T} is diagonalizable tridiago-
nal matrix if and only if it has no multiple eigenvalues.
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5 Procedure for constructing tridiagonal matrix
and its examples

In this section, based on the discussions in the previ-
ous sections, we first design a procedure for constructing
a tridiagonal matrix with specified multiple eigenvalues.
We next give four kinds of examples for demonstrating
that the resulting procedure can provide with tridiagonal
matrices with multiple eigenvalues. Examples have been
carried out with our computer with OS: Mac OS X 10.8.5,
CPU: Intel Core i7 2 GHz, RAM: 8 GB. We also use the
scientific computing software Wolfram Mathematica 9.0.
In every example, all the entries of # are simply set to 1 and
those of w are not artificial. The readers will realize that
the settings of # and w are not so difficult for satisfying (6)
and (27).

Let us here consider the relationship of five theorems in
the previous sections. Theorem 2 shows that the eigen-

values of Tl(") in the tridiagonal form as (10) are equal to
the poles of the generating function F(z) and the multi-
plicity of the eigenvalues coincide with the those of the
poles of F(z). Theorems 3 and 4 claim that the mini-
mal polynomial of a general matrix A, denoted by 4 (z)
is just the denominator of F(z) involving f, = w/lA"u,
and it coincides with the characteristic polynomial of
Tl(n) denoted by ¢1(z), except for the factor correspond-
ing to zero-eigenvalues. With the help of Theorem 1, we

thus realize that the nonzero eigenvalues of Tl(o) with the

entries involving qgo), qgo), ceos qEO) and eio), ego), e e§°j1

become roots of the minimal polynomial ¥4 (z) in the case
0) (0 0 0) (0 0

wherqu),qé),...,qg) i),e(z),...,eg_)l

the qd formula (4) under the initial settings e(()") = 0 and

qgn) = fu1/fa with f, = wHA"u. See also Figure 1 for

and e are given by
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the diagram for getting qs(") and ¢! by the qd formula
(4). A procedure for constructing 7' = Tl(o) with the same
nonzero eigenvalues as A is therefore as follows.

Setl=mif ANy #Qorl=m—myif \y =0.

Choose u# and w as in (6) and (27).

Compute f;, = wHA"uforn =0,1,...,2 — 1.

Seteon):0forn:0,1,...,21—3‘

Compute qi") = fus1/fuforn=0,1,...,2] — 2.
Repeat (a) and (b) fors =2,3,...,[

(a) Compute e@l = qgﬁl) + eﬁfgl) - q@l for
n=0,1,...,2l —2s + 1.
(b) Compute ¢\ = qii"‘l'l)egﬂ'l)
n=0,1,...,2] — 2s.
Construct a tridiagonal matrix by arranging

0 (0 (0) 0) (0 (0)
ql )qz ;-..;ql 1 ,62 ,...,el_l.

S S S e

/ e@l for

and e

According to Theorem 5, the minimal and the character-
istic polynomials of the resulting tridiagonal matrix T are
equal to each other. Moreover, T is diagonalizable if and
only if it has no multiple eigenvalues.

It is necessary to control the eigenvalues of A for getting
T as a tridiagonal matrix with specified eigenvalues. It is
easy to specify the eigenvalues of the diagonal matrix and
those of the Jordan matrix.

First, in the procedure, let us consider the case where

A = diag(2,2,2,1,1,1) € R®*®

which is a diagonal matrix with two eigenvalues 1 and 2
each of multiplicity 3. Obviously, the characteristic and
the minimal polynomials are factorized as (z — 1)3(z — 2)3
and (z—1)(z—2), respectively. So, the integers [ and m are
immediately determined as / = 2 and m = 6. Moreover,

_ o2 @4
-
0=eH— >e¢

T~

folf a3

\/

(21-3) 21-3)
0 eo _—> el

2

Fual Fua= 4

initial settings

Figure 1 The qd diagram for a tridiagonal matrix construction.

Q1-4)
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by letting # = (1,1,1,1,1,1)T and w = (1,1,1,1,1,1) T,
we derive a tridiagonal matrix as

T=< >€R2X2

whose characteristic and minimal polynomials are both
factorized as (z — 1)(z — 2). The tridiagonal matrix T
is a diagonalizable matrix with the distinct eigenvalues 1
and 2.

Next, let us adopt a bidiagonal matrix, which can be
regarded as the Jordan matrix, with eigenvalues 2 of mul-
tiplicity 6 as A, namely,

21
21
21
21
21
2

— W
[SIISUNE

c R6X6,

in the procedure. Since the characteristic polynomial of
A is equal to the minimal one, the integers [ and m are
determined as /| = m = 6. Then the procedure with
u=(1,1,1,11,1T andw = (1,1,0,1,0,1) T constructs
a tridiagonal matrix, which can not be symmetrized,

1 3
4 16
11 4
I 3 —39
10
1 193 iy
T = e R°*°,
1 0-8
29 1
by E
L3

The characteristic and the minimal polynomials of A and
T are all the same polynomial with respect to z, which is
factored as (z — 2)°. So, the tridiagonal matrix T is not
diagonalizable.

Let us prepare the Jordan matrix

31
31

c R8>8,

The matrix A has multiple eigenvalues such as 11
M =3, X3 =3,k = 3, A5 = 3,k = 3, Ay
Ag = 2. Itis noted that |A1| = |Ao| = |A3] = |Aa| = |A5] =
|[A¢| > |A7] = |rg| > 0. The characteristic and the mini-
mal polynomials of A are factorized as (z—2)%(z— 3)° and
(z — 2)%(z — 3)3, respectively. So, let / = 5and m = 8 in
the procedure. Then, the settings u = (1,1,1,1,1,1,1,1) "

:3,
:2’
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and w = (1,1,1,1,1,1,1,1) 7 bring us to a tridiagonal
matrix, which can not be symmetrized,

131
2 16
17 13
L 3 -7
_ _1 1 5x5
= I =% Teo eR
| 1232 _13
377 B4l
77
1 5%

whose characteristic and minimal polynomials are both
factorized as (z — 2)2(z — 3)3, which is just equal to the
minimal one of A. The tridiagonal matrix 7 is not a diag-
onalizable matrix with eigenvalues 2 and 3 of multiplicity
2 and 3, respectively.

Finally, let us A be set as the Jordan matrix with complex
eigenvalues 2+i and 2—i each of multiplicity 2 and distinct
real eigenvalues 1 and 2, namely,

2+i 1
241

in this procedure. By taking account that the characteris-
tic and the minimal polynomials of A are equal to each
other, let / = m = 6 in the procedure. Under the settings
u=(1,1,1,1,1,1)"T andw = (1,1,1,1,1,1) T, the result-
ing matrix T is a real tridiagonal matrix, which can not be
symmetrized,

319
6 36
1 443 1920
114 361
1 363 _ 200 ot
— 760 1600 X
T = 1 1187 240 e R°™°,
440 121
1 37 11
66 36
1 B

6

The characteristic and the minimal polynomials of A and
T are all the same polynomial with respect to z, which is
factorized as (z — 2 + i)%*(z — 2 — i)%(z — 2)(z — 1). So, the
tridiagonal matrix T is not a diagonalizable matrix with
the same complex multiple eigenvalues and real distinct
ones as A.

6 Conclusion

In this paper, we clarify that the qd recursion formula
is applicable to constructing a tridiagonal matrix with
specified multiple eigenvalues. We first investigate the
denominator of the generating function associated with
the sequence given from two suitable vectors and the pow-
ers of a general matrix A, through considering the Jordan
canonical form of A. Accordingly, it is observed that the
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minimal polynomial of A coincides with the characteristic
polynomial of a tridiagonal matrix 7T, denoted by ¢7(2),
or the polynomial 2”2 ¢7(z) for the multiplicity m;, of the
zero-eigenvalues of A. Next, by taking account of the Jor-
dan canonical form of T, we show that the characteristic
and the minimal polynomials of T are equal to each other.
We finally present a procedure for constructing a tridiag-
onal matrix with specified multiple eigenvalues, and then
give four examples for the resulting procedure.
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