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Finding the optimal opening time of
harvesting farmed fishery resources

Hidekazu Yoshioka1* and Yuta Yaegashi2
Abstract

As an application of mathematics to engineering problems, this paper formulates a simple optimal stopping problem
to decide the opening time of harvesting farmed fishery resources that maximizes an economic objective function. A
sufficient condition for unique existence of the internal optimal opening time is provided and its concrete mathematical
analysis is carried out. Comparative statics of the optimal opening time clearly reveals its dependence on the parameters
of the farming environment. The problem is finally applied to analyzing management of a commercially important
fishery resource in Japan.
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1 Introduction
Aquacultures farm aquatic organisms for commercial
purposes and their production value has been rapidly
growing over the world [5]. Establishment of appropriate
management policies of farmed aquatic organisms from
economic viewpoints has been an urgent issue for current
fishery sectors, which would depend on type and purpose
of each aquaculture [7, 12, 13, 17, 19]. One of the most
crucial issues in operating aquacultures is to decide the
optimal opening time of harvesting the farmed fishery re-
sources after which they are harvested and sold; however,
the opening time has empirically been determined in the
conventional aquacultures.
In order to approach this issue from a theoretical side,

this paper considers a new simple and deterministic, but
nontrivial optimal stopping (starting) problem [2, 11] on
management of farmed aquatic organisms in an aquacul-
ture system. The goal of the problem is finding an econom-
ically optimal opening time of harvesting farmed fishery
resources, after which they are harvested with a known in-
tensity and sold. The problem reduces to finding a solution
(the optimal opening time) to differential equations whose
behavior can be analytically resolved. This paper presents a
sufficient condition for unique existence of an internal
* Correspondence: yoshih@life.shimane-u.ac.jp
1Faculty of Life and Environmental Science, Shimane University,
Nishikawatsu-cho 1060, Matsue, Shimane 690-8504, Japan
Full list of author information is available at the end of the article

© The Author(s). 2016 Open Access This article
International License (http://creativecommons.o
reproduction in any medium, provided you giv
the Creative Commons license, and indicate if
solution, its comparative statics, and a real application
focusing on a current Japanese aquaculture system.
The rest of this paper is organized as follows. Section 2

presents the governing equation of the population dynam-
ics of farmed aquatic organisms as the fishery resources.
The optimal stopping problem is formulated in the same
section. Section 3 performs mathematical analysis of the
problem with the particular emphasis on the unique exist-
ence of the optimal opening time and its comparative stat-
ics. An application of the problem to the commercially
important fish Plecoglossus altivelis (P. altivelis) in
Japan [8, 15, 18] is also performed in this section. Section
4 concludes this paper.

2 Mathematical formulation
2.1 Population dynamics
The period of farming homogenous aquatic organisms
in an aquaculture system (a pool) is the interval [0,T]
with a fixed terminal time T. The time is denoted by t.
The farming starts and ends at t = 0 and t =T, respectively.
The total number of individuals and the individual body
weight in the system are denoted as Nt : [0,T]→ [0,+∞)
and Wt : [0,T]→ [0,+∞), respectively. Given initial condi-
tions N0 > 0 and W0 > 0, the governing ordinary differen-
tial equations (ODEs) of Nt and Wt are specified as

dNt

dt
¼ − Rþ cχ t>τf g

� �
Nt and

dWt

dt
¼ f W tð Þ ¼ Wtg Wtð Þ;

ð1Þ
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respectively where R > 0 is the natural mortality, c > 0 is
the harvesting rate, and f, g ∈ C1(ℝ) are chosen so that
Wt with a sufficiently small W0 > 0 is increasing and
bounded for t ∈ [0,T] (Proposition B.7 of Smith and
Waltman [14]). τ represents the opening time of harvest-
ing the aquatic organisms to be optimized and χS is the
usual indicator function for the set S. Note that the gov-
erning ODE of Wt, which is a source of nonlinearity of the
optimal stopping problem to be presented in this paper, is
independent of τ and is decoupled with that of Nt.

2.2 Objective function
The admissible range of τ is [0,T]. The objective func-
tion Jτ to be maximized with respect to τ is set as

Jτ ¼ α

Z T

τ
cNsWsds−β

Z T

0
pNsWsds ð2Þ

where α > 0 and β > 0 are weight parameters and p > 0 is
the unit-time cost of farming, such as for feeding the or-
ganisms and for cleaning up their excrements in the
pool. The right side of (2) is a sum of the profit by the
harvesting during (τ,T) (first term) and the cost of the
farming during the whole period (0,T) (second term).
The objective function (2) is qualitatively different from
the conventional ones with singular control variables
having deltaic harvesting strategies that harvest the
whole population at once [9, 10, 12]. The present object-
ive function rather considers a situation where the popu-
lation is continuously harvested in time with the known
or predicted harvesting rate c and the cost of harvesting
is small and negligible. Actually, such a situation is com-
mon in actual management of farmed P. altivelis with
small-scale aquaculture systems in Japan as focused
on later.
The objective function Jτ can be rewritten as

Iτ≡
1

N0βp
J τ ¼ −

Z τ

0
e−RsWsdsþ γ−1ð Þe−Rτ

Z T

τ
e− Rþcð Þ s−τð ÞWsds

ð3Þ

with the derivatives

dIτ
dτ

¼ γe−Rτ −W τ þ K τð Þ ð4Þ

and

d2Iτ
dτ2

¼ γe−Rτ c K τ−W τð Þ þ Rþ c
γ
−g W τð Þ

� �
W τ

� �

ð5Þ

where Kτ is given by
K τ ¼ c 1−
1
γ

� �Z T

τ
e− Rþcð Þ s−τð ÞWsds ∈ C 0;T½ �ð Þ∩C1 0;Tð Þ

ð6Þ
and γ ¼ αc

βp . The condition γ > 1 for the situation where
the profit of the harvesting exceeds the cost of farming
per unit time is assumed in this paper. Maximizing Jτ
with respect to τ is equivalent to doing so for Iτ. It is
straightforward to show that Kτ in (6) solves the
terminal value problem of the ODE

dK τ

dτ
¼ Rþ cð ÞK τ−c 1−

1
γ

� �
W τ for 0≤τ < T with KT ¼ 0:

ð7Þ

Derivation procedures of (4), (5), (6), and (7) are pre-
sented in Appendix. According to (4) and the classical
theory of statistic optimization problems (Chapter 2.2 of
Bonnans et al. [1]), the optimal opening time τ = τ* as-
suming it is an internal solution τ* ∈ (0,T) has to satisfy

W τ� ¼ K τ� and
d2Iτ�

dτ2
¼ γe−Rτ

�
W τ� Rþ c

γ
−g W τ�ð Þ

� �
< 0

ð8Þ

where the first equation of (8) is the necessary condition
for an extreme value and the second one is that to be a
local maximum. Notice that I ∈ C([0,T]) ∩ C2(0,T).
Remark 2.1 Mathematically, β and p can be combined

into single parameter; however, each variable has differ-
ent industrial meaning: the weight and the cost. They
are separately described in this paper due to the above-
mentioned reason.
Remark 2.2 The present formulation and the mathemat-

ical analysis below are still valid for a stochastic counterpart
where Wt follows a diffusion process and its mean E[Ws]
is known explicitly like the stochastic Gompertz model
[4, 21]. In this case, Iτ is replaced by

E Iτ½ � ¼ −
Z τ

0
e−RsE Ws½ �dsþ γ−1ð Þe−Rτ

Z T

τ
e− Rþcð Þ s−τð ÞE Ws½ �ds:

ð9Þ

Considering the effects of uncertain model parameters
in the governing ODE of Wt as in Dorini et al. [3] can
also be possible based on (9), which will be addressed in
forthcoming papers.

3. Mathematical analysis
This section presents concrete mathematical analysis re-
sults on unique existence and comparative statics on τ*

with concise proofs. In what follows, ε represents a suffi-
ciently small positive constant whose value depends on
the context.
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Firstly, assuming the simplest case g(Wt) = r = const > 0,
the following proposition holds.
Proposition 3.1: For g(Wt) = r = const > 0 with r > R + c,

τ* is analytically expressed as

τ� ¼ max 0;T−
1

r− Rþ cð Þ ln 1þ γ

γ−1
r− Rþ cð Þ

c

� �� �
:

ð10Þ
Based on Theorem 6.4 of Thieme [16], additional

assumptions for more realistic, sigmoid-like growth of
individuals are specified.
Assumption 3.2 f is sufficiently regular so that f ∈

C2(ℝ). There exists one a > 0 such that f(0) = f(a) = 0,
f(w) > 0 for 0 <w < a, and f″(w) < 0 for 0 <w < a. In
addition, there exists L such that 0 < L < a, f′(w) > 0 for 0
<w < L, f′(w) < 0 for L <w < a, and f′(L) = 0. Furthermore,
0 <W0 < a.
Assumption 3.2 leads to W ∈ C([0,T]) ∩ C2(0,T), 0 <

Wt < a with dWt
dt > 0 for 0 < t < T and Wt has at most one

inflection point for 0 < t < T where d2Wt
dt2 changes the

sign from positive to negative. It also leads to g(w) > 0
and g′(w) < 0 for 0 < w < a.
Notice that WT > KT = 0 and W, K ∈ C([0,T]) ∩ C1(0,T).

Therefore, at least one τ* ∈ (0,T) exists if

W 0 < K0 ¼ c 1−
1
γ

� �Z T

0
e− Rþcð ÞsWsds ð11Þ

by the classical mean value theorem, which is valid at
least for sufficiently large g: namely, for fishery resources
that grow well. The next lemma on the profile of Kτ is
used for proving unique existence of the internal τ*.
Lemma 3.3: Kτ has no local minimum and has at

most one local maximum for 0 < τ < T at some τ = τ0. In
addition, Kτ <Wτ for τ0 ≤ τ ≤ T.

(Proof of Lemma 3.3) Since K ∈ C([0,T]) ∩ C2(0,T). If Kτ

has a local minimum at a τ0 ∈ (0,T), then
dK τ0
dτ ¼ 0. It is

straightforward to show

d2K τ0

dτ2
¼ −c 1−

1
γ

� �
g W τ0ð ÞW τ0 < 0: ð12Þ

Hence the local extreme cannot be a local minimum,
showing that Kτ has no local minimum and therefore
has at most one local maximum for 0 < τ < T because
of its smoothness. By (7), assuming K τ0 is a local
maximum yields

K τ0 ¼
c

Rþ c
1−

1
γ

� �
W τ0 < W τ0 ; ð13Þ

which with dK τ
dτ < 0 and dW τ

dτ > 0 for τ0 < t ≤ T completes
the proof.
Lemma 3.3 then leads to the following theorem,
which is the main result of this paper.

Theorem 3.4: τ* ∈ (0,T) uniquely exists under Assump-
tion 3.2 and (11).

(Proof of Theorem 3.4) Assuming that Kτ has no local
maximum for 0 < τ < T, then Wτ is strictly increasing and
Kτ is strictly decreasing for 0 < τ < T by Lemma 3.3,
which immediately follows the uniqueness of τ* under
the assumptions. Assuming that Kτ has one local max-

imum at τ = τ0 with 0 < τ0 < T, then
dK τ
dτ < 0 for τ0 < τ < T

and dK τ
dτ > 0 for 0 < τ < τ0 since Kτ has no local minimum.

Lemma 3.3 shows Kτ <Wτ for τ0 − ε < τ < T and thus τ*
< τ0 if τ* ∈ (0,T) exists. The existence of such τ* follows

from (11) since then dIτ
dτ changes the sign from positive

to negative at τ = τ* and consequently d2Iτ�
dτ2 < 0 follows

because of continuity and smoothness of Iτ. Assume that
this τ* is the largest solution to dIτ

dτ ¼ 0 that locally maxi-

mizes Iτ. Then, since g(Wτ) is decreasing in τ, d2Iτ�
dτ2 < 0

leads to

sgn
d2Iτ
dτ2

� �
¼ sgn Rþ c

γ
−g W τð Þ

� �
¼ −1 < 0 ð14Þ

for τ < τ* such that Wτ = Kτ. If there exist another τ = τ*
< τ* that locally maximizes dIτ

dτ , then there has to exist ~τ
with τ� < ~τ < τ� that locally minimizes Iτ because of its
continuity and smoothness. Such ~τ has to comply with
both dI~τ

dτ = 0 and d2I~τ
dτ2 > 0, which contradicts (14). Unique-

ness of τ* ∈ (0,T) therefore follows under the
assumptions.

Theorem 3.4 with the right equation of (8) immediately
leads to the following proposition since I ∈ C([0,T]) ∩
C2(0,T).

Proposition 3.5 λ≡g W τ�ð Þ− Rþ c
γ

� �
> 0 under As-

sumption 3.2 and (11).
Proposition 3.5 leads to the following comparative

statics results, which are numerically verified later as well.
Proposition 3.6: Under Assumption 3.2 and (11), the

comparative statics results

∂τ�

∂γ
> 0;

∂τ�

∂R
< 0; and

∂τ�

∂c
> 0 ð15Þ

follow where the last one is subject to sufficiently small c.

(Proof of Proposition 3.6) Differentiating both sides of
W τ� ¼ K τ� with respect to each parameter and rearran-
ging the resulting equation with the help of Leibnitz’s
rule (Appendix A of Yoshioka and Unami [20]) yields



Fig. 1 Measured (circles) and identified Wt (curves) of farmed P. altivelis

Fig. 2 Wτ and Kτ for R = 0.005 (1/day), p = c = 0.01 (1/day), α = 5, and
β = 1 (Case 1) and for R = 0.005 (1/day), p = c = 0.02 (1/day), α = 1.1,
and β = 1 (Case 2)
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∂τ�

∂γ
¼ 1

γ γ−1ð Þ λ
−1 > 0; ð16Þ

∂τ�

∂R
¼ −c 1−

1
γ

� �
W −1

τ� λ
−1
Z T

τ�
s−τ�ð Þe− Rþcð Þ s−τ�ð ÞWsds < 0;

ð17Þ
and

∂τ�

∂c
¼ W −1

τ� λ
−1
Z T

τ�
1−c 1−

1
γ

� �
s−τ�ð Þ

� 	
e− Rþcð Þ s−τ�ð ÞWsds > 0

ð18Þ
where (18) follows if

1−c 1−
1
γ

� �
s−τ�ð Þ > 1−c 1−

1
γ

� �
T−τ�ð Þ > 1−c 1−

1
γ

� �
T > 0;

ð19Þ
namely for sufficiently small c.
Remark 3.7
Proposition 3.6 immediately yields ∂τ�

∂α > 0, ∂τ
�

∂β < 0, and
∂τ�
∂p < 0 since γ ¼ αc

βp.

Proposition 3.6 and Remark 3.7 show that increasing
the profit rate (α) or decreasing the farming cost (β or p)
increases τ* since harvesting (and selling) the more grown
organisms results in more profitable. Increasing the har-
vesting rate c also increases τ* since ∂τ�

∂c > 0 at least for
small c. On the other hand, increasing the mortality R re-
sults in smaller τ* since only small number of individuals
may remain near the end of the farming period.
A brief application of the present optimal stopping

problem is provided focusing on an application to the
commercially important fish P. altivelis in Japan, which
are the main inland fishery resources in the country. The
P. altivelis has an annual life history, which is reviewed in
detail in the literature [15, 18] and the references therein.
In each year, farming juveniles of P. altivelis in an aquacul-
ture system starts in spring and they mature in summer
around which harvesting opens. The harvesting ends in
the coming autumn. Hii River Fishery Cooperatives in
Shimane Prefecture, Japan that farms P. altivelis from
May to October in each year measured the mean body
weight of the individuals from May 7, 2015 (t = 0 (day)) to
July 13, 2015 (t = 55 (day)) as shown in Fig. 1, which is fit-
ted with the conventional Verhulst model [16]

dWt

dt
¼ bWt 1−

Wt

a

� �
ð20Þ

with W0 = 9.9 (g), a = 76.7 (g), and b = 0.04 (1/day) based
on a standard nonlinear least squares method. Reasonable
ranges of the parameters are R, p, c =O(10−3) to O(10−2)
(1/day) and α, β =O(100) where the latter is set to be non-
dimensional without the loss of generality. The terminal
time is set as T = 180 (day). The optimal opening time τ* is
computed with the help of the classical four-stage Runge-
Kutta method using (7) and (8).
Figure 2 shows profiles of Wτ and Kτ for R = 0.005 (1/

day), p = c = 0.01 (1/day), α = 5, and β = 1 (Case 1) and
for R = 0.005 (1/day), p = c = 0.02 (1/day), α = 11, and β = 1
(Case 2). The parameters in Case 1 verify (11) (τ* ϵ (0,T))
while those in Case 2 do not (τ* = 0), which is consistent
withTheorem 3.4. Fig. 2 directly implies (11).
Figures 3, 4 and 5 show the computed τ* in the R-c

phase space, p-c phase space, and α-β phase space, re-
spectively. The results numerically confirm the compara-
tive statics results of Proposition 3.6. It is finally noted
that the current opening time τ* that Hii River Fishery
Cooperatives is adopting is 40 (day) to 50 (day). This is
consistent with the computational results using the spe-
cified parameter values. To the authors’ knowledge, this



Fig. 3 Computed τ* in the R-c phase space. τ* = 0 in the white area
Fig. 5 Computed τ* in the α-β phase space. τ* = 0 in the white area
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kind of application of mathematical models to manage-
ment of P. altivelis has not been performed so far.

4 Conclusions
As an application of mathematics to engineering problems,
this paper formulated a simple optimal stopping problem
to decide the opening time τ* of harvesting farmed aquatic
organisms in an aquaculture system. The existence and
uniqueness of τ* were mathematically analyzed. In addition,
comparative statics of τ* clearly revealed its dependence on
the parameters on the farming environment. An applica-
tion example of the present optimal stopping problem was
finally provided with identified parameters.
Future research will extend the present model to a sto-

chastic counterpart [2, 11] along with detailed mathemat-
ical analysis where uncertainties involved in the individual
growth and harvesting rate are taken into account. Con-
sidering the investment and development cost [6] for
Fig. 4 Computed τ* in the p-c phase space. τ* = 0 in the white area
expansion or abandonment of aquacultures systems is also
a possible extension of the present mathematical model.
Verifying the theoretically derived optimal opening times
with real operations of aquacultures will be an important
research topic as well. Addressing this topic would ad-
vance and sophisticate both mathematical science and
fishery engineering.

Appendix
Derivation procedures of (4), (5), (6), and (7)
This appendix presents derivation procedures of (4),

(5), (6), and (7) in the main text.
Firstly, Iτ can be rewritten as

Iτ ¼ −
Z τ

0
e−RsWsds þ γ−1ð Þe−Rτ

Z T

τ
e− Rþcð Þ s−τð ÞWsds

¼ −
Z τ

0
e−RsWsdsþ γ−1ð Þecτ

Z T

τ
e− Rþcð ÞsWsds:

ð21Þ

Differentiating both sides of (21) with respect to τ yields

dIτ
dτ

¼ d
dτ

−
Z τ

0
e−RsWsds

� �
þ d
dτ

γ−1ð Þecτ
Z T

τ
e− Rþcð ÞsWsds

� �

¼ −e−RτW τ þ c γ−1ð Þecτ
Z T

τ
e− Rþcð ÞsWsds− γ−1ð Þe−RτW τ

¼ −γe−RτW τ þ c γ−1ð Þecτ
Z T

τ
e− Rþcð ÞsW sds

¼ γe−Rτ −W τ þ c 1−
1
γ

� �Z T

τ
e− Rþcð Þ s−τð ÞWsds

� �

¼ γe−Rτ −W τ þ K τð Þ;
ð22Þ

which is (4) with Kτ defined in (6). Differentiating Kτ

with respect to τ then yields
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dK τ

dτ
¼ d

dτ
c 1−

1
γ

� �Z T

τ
e− Rþcð Þ s−τð ÞWsds

� 	

¼ d
dτ

c 1−
1
γ

� �
e Rþcð Þτ

Z T

τ
e− Rþcð ÞsWsds

� 	

¼ Rþ cð Þc 1−
1
γ

� �
e Rþcð Þτ

Z T

τ
e− Rþcð ÞsWsds−c 1−

1
γ

� �
W τ

¼ Rþ cð ÞK τ−c 1−
1
γ

� �
W τ

ð23Þ

which proves (7). Using (23) and (1), d2Iτ
dτ2 can be directly

calculated as

d2Iτ
dτ2

¼ d
dτ

γe−Rτ −W τ þ K τð Þ
 �

¼ −Rγe−Rτ −W τ þ K τð Þ þ γe−Rτ
d
dτ

−W τ þ K τð Þ

¼ γe−Rτ RW τ−RK τ−
dW τ

dτ
þ dK τ

dτ

� �

¼ γe−Rτ RW τ−RK τ−W τg W τð Þ þ Rþ cð ÞK τ−c 1−
1
γ

� �
W τ

� 	

¼ γe−Rτ c K τ−W τð Þ þ Rþ c
γ
−g W τð Þ

� �
W τ

� 	
;

ð24Þ

which is (5).
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