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Abstract

We focus on the numerical study of magnetic geodesics on surfaces, including surfaces with singularities. In addition
to the numerical investigation, we give restrictive necessary conditions for tangency directions of magnetic geodesics
passing through certain types of singularities.
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1 Introduction
A magnetic geodesic describes the trajectory of a charged
particle in a Riemannian manifold M under the influence
of an external magnetic field. Numerical experimenta-
tion suggests that almost all magnetic geodesics tend to
avoid any lightlike singularities (points where the tangent
spaces are lightlike) thatM may have, regardless of choice
of bounded smooth external magnetic field. Our primary
result is a mathematically rigorous confirmation of this
behavior.
Initially, we take M to be a complete, orientable Rie-

mannian manifold without boundary of dimension n and
Riemannian metric 〈·, ·〉. For a given two-form � defined
on M we associate a smooth section Z ∈ Hom(TM,TM)

defined via

〈η,Z(ξ)〉 = �(η, ξ)

for all η, ξ ∈ TM. We will investigate the existence of
closed curves γ = γ (t) satisfying the following equation

∇γ ′γ ′ = Z
(
γ ′) . (1.1)

Note that, in contrast to geodesics, which correspond
to Z = 0, the equation for magnetic geodesics is not
invariant under rescaling of t.
In the case that M is a surface, that is n = 2, we know

that every two-form� is a multiple of the volume form�0
associated with 〈·, ·〉. Thus, every two-form can be written
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as � = κ�0 for some function κ : M → R. We can exploit
this fact to rewrite the right hand side of (1.1) as

Z
(
γ ′) = κJ90γ

(
γ ′) , (1.2)

where J90γ represents rotation in the tangent space TγM
by angle π/2, see [10]. Due to this fact one often refers to
(1.2) as the prescribed geodesic curvature equation, and κ

is proportional to the geodesic curvature function.
We will always assume that κ is a smooth and bounded

function.

Remarks 1.1 If the two-form � is exact, then (1.1) also
arises from a variational principle, see [2, 14].

Note that a solution of (1.1) has constant speed, which
follows from

∂

∂t
1
2
|γ ′|2 = 〈∇γ ′γ ′, γ ′〉 = 〈

Z(γ ′), γ ′〉 = �
(
γ ′, γ ′) = 0

(1.3)

due to the skew-symmetry of the two-form �.
For magnetic geodesics on surfaces, several existence

results are available, employing techniques from symplec-
tic geometry [5, 6] and from the calculus of variations
[14]. In the papers of Schneider [11, 12], and the paper
by Schneider and Rosenberg [13], existence results for
closed magnetic geodesics on Riemann surfaces are given
by studying the zeros of a certain vector field. Recently,
an existence result for magnetic geodesics has been estab-
lished by the heat flow method [1].
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Here rather, we give an approach more aimed at useful-
ness for numerics, and then proceed to produce examples
of closed magnetic geodesics numerically. We then study
the behavior of magnetic geodesics near singular points
of a surface by proving our main result Theorem 3.1, and
our proof employs the fact that magnetic geodesics have
constant speed parametrization.
This article is organized as follows: In Section 2 we

derive several numerical examples of magnetic geodesics.
Moreover, we provide several analytic statements that
support our numerical calculations. In Section 3 we focus
on magnetic geodesics on almost-everywhere-spacelike
surfaces with lightlike singularities and show that they will
tend to turn away from the singularities unless they enter
the singular sets at specific angles, which is the content of
Theorem 3.1.

2 Closedmagnetic geodesics on surfaces in
Euclidean andMinkowski 3-spaces

Before we turn to the numerical integration of (1.1) let us
make the following observations.
By the Theorem of Picard-Lindeloef we always get a

local solution to (1.1). However, similar to the classi-
cal Hopf-Rinow theorem in Riemannian geometry we
can show

Theorem 2.1 Let (M, 〈·, ·〉) be a complete Riemannian
surface and κ : M → R be a prescribed function. Let

γ (t) : (a, b) → M

be a curve in M with geodesic curvature κ(γ (t)) at γ (t), in
other words, γ is a nontrivial solution to

∇γ ′γ ′ = κJ90γ

(
γ ′) . (2.1)

Then the domain (a, b) can be extended to all of R.

Proof To show that the maximal interval of existence of
(2.1) is indeed all of R we assume that there is a max-
imal interval of existence and then show that we can
extend the solution beyond that interval. Thus, assume
that γ : (a, b) → M is a magnetic geodesic with maximal
domain of definition. Since |γ ′|2 is constant we know that
the curve γ has constant length L[ γ ]. Then we have for a
sequence γ (ti)i∈N

d(γ (ti), γ (tj)) ≤ L[ γ[ti,tj]]≤ C|ti − tj|,

where d denotes the Riemannian distance function.
Hence, γ (ti)i∈N is a Cauchy sequence with respect to d. It
is easy to see that the limit is independent of the chosen
sequence.

As a next step, we show that we may extend γ ′ to (a, b].
To this end we use the local expression for (2.1), that is

(
γ ′′)k = −

2∑

i,j=1
	k
ij
(
γ ′)i (γ ′)j−κ

(
J90γ

(
γ ′))k , k = 1, 2.

Now, consider the expression

|γ ′(ti) − γ ′(tj)|L∞ =
∣
∣
∣
∣

∫ tj

ti
γ ′′(τ )dτ

∣
∣
∣
∣
L∞

≤ C|ti − tj|L∞ .

Using that |γ ′| is constant it follows that γ ′(ti) forms a
Cauchy sequence and converges to some γ ′∞. Again, the
limit is independent of the chosen sequence.
By differentiating the equation for magnetic geodesics

and using the same method as for estimating |γ ′(ti) −
γ ′(tj)|L∞ we can show that also γ ′′(ti) forms a Cauchy
sequence.
Now, assume that γ̃ : (β − a,β + a) → M is a magnetic

geodesic with γ̃ (β) = γ̂ (β) and γ̃ ′(β) = γ̂ ′(β). Since
magnetic geodesics are uniquely determined by their ini-
tial values, γ̃ and γ̂ coincide on their common domain of
definition. This yields a continuation of γ as a magnetic
geodesic on (a, b + β), which contradicts the maximality
of b.

Remarks 2.2 We will be looking for closed solutions
of (1.1), which Theorem 2.1 does not inform us about.
Theorem 2.1 can be generalized to higher dimensions. Note
that Theorem 2.1 no longer holds on a surface that is
in some way not complete, for example a surface with
singularities.

Again, since magnetic geodesics are uniquely deter-
mined by their initial values, the intermediate value
theorem gives us the following method for finding closed
magnetic geodesics, which was employed to produce the
numerical examples of closed magnetic geodesics found
in the figures in this paper:

Proposition 2.3 Let n = 2. Suppose there exists a con-
tinuous one-parameter family of solutions γs, with s ∈
[0, 1], as in Theorem 2.1, and suppose there exist t1(s) and
t2(s) in R with t2(s) > t1(s) such that

(1) t1(s) and t2(s) depend continuously on s,
(2) γs(t1(s)) = γs(t2(s)) for all s ∈ [0, 1],
(3) {γ ′

0(t1(0)), γ ′
0(t2(0))} spans Tγ0(t1(0))M = Tγ0(t2(0))M

with one orientation, and {γ ′
1(t1(1)), γ ′

1(t2(1))} spans
Tγ1(t1(1))M=Tγ1(t2(1))M with the opposite orientation.

Then γ :[t1(s), t2(s)]→ M forms a closed loop for some
s ∈ (0, 1).
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For our numerical studies of (1.2) we need the following

Proposition 2.4 Let M ⊂ R
3 be a surface. Then Eq. 1.2

is equivalent to the system

|γ ′|2 = c is constant, (2.2)
1
|n|

〈
γ ′′, γ ′ × n

〉 = κ|γ ′|2, (2.3)

where n denotes a normal to the surface compatible with
J90 and × denotes the cross product in R

3.

Proof The first equation can easily be derived from (1.2)
(see also Eq. (1.3)):

∂

∂t
1
2
|γ ′|2 = 〈∇γ ′γ ′, γ ′〉 = κ

〈
J90γ (γ ′), γ ′〉 = 0.

For the second equation, we consider
1
|n|

〈
γ ′′, γ ′ × n

〉=
〈
γ ′′, J90γ (γ ′)

〉
= 1

κ

〈
γ ′′,∇γ ′γ ′〉= 1

κ

∣
∣∇γ ′γ ′∣∣2 .

Since the magnetic geodesic equation implies
|∇γ ′γ ′|2 = κ2|γ ′|2, we obtain the second equation.
To establish the equivalence between (1.1) and the sys-

tem (2.2), (2.3) we note that (2.2), (2.3) is obtained from
(1.1) by taking the scalar product with both γ ′ and J90γ (γ ′).
However, γ ′, J90γ (γ ′) form a basis of the tangent space
TγM, yielding the equivalence.

We now consider a surface S(u, v) parametrized by coor-
dinates (u, v) in a subdomain of R2, and a curve γ (t) =
S(u(t), v(t)) on the surface. We can rewrite (2.2) and (2.3):
Expanding to obtain

γ ′ = Suu′ + Svv′,
γ ′′ = Suuu′2 + Svvv′2 + Suu′′ + Svv′′ + 2Suvu′v′

and taking n = Su × Sv, and using

γ ′ × n = γ ′ × (Su × Sv) = 〈
γ ′, Sv

〉
Su − 〈

γ ′, Su
〉
Sv ,

we can convert Eqs. (2.2) and (2.3) into

c = |Su|2u′2 + |Sv|2v′2 + 2〈Su, Sv〉u′v′, (2.4)

c|Su × Sv|κ = (
u′′v′ − v′′u′) (|Sv|2|Su|2 − |〈Su, Sv〉|2

)
(2.5)

+ u′3 (〈Su, Sv〉〈Suu, Su〉 − |Su|2〈Sv, Suu〉
)

+ v′3 (|Sv|2〈Svv, Su〉 − 〈Sv, Su〉〈Sv, Svv〉
)

+ u′2v′ (|Sv|2〈Suu, Su〉 − 〈Su, Sv〉〈Suu, Sv〉
+2〈Su, Sv〉〈Suv, Su〉 − 2|Su|2〈Suv, Sv〉

)

+ v′2u′ (〈Su, Sv〉〈Su, Svv〉 − |Su|2〈Svv, Sv〉
+2〈Su, Suv〉|Sv|2 − 2〈Su, Sv〉〈Suv, Sv〉〉

)
.

However, if the surface is conformally parametrized,
that is

〈Su, Sv〉 = 0, |Su|2 = |Sv|2 = f (u, v) ≥ 0,

the system (2.4) and (2.5) simplifies to

c = (
u′2 + v′2) f , (2.6)

cκ = (
u′′v′ − v′′u′) f − u′3〈Sv, Suu〉 + v′3〈Su, Svv〉

− 1
2
u′2v′fu + 1

2
v′2u′fv. (2.7)

Using the formulations (2.4), (2.5), (2.6) and (2.7), we
now use the idea in Proposition 2.3 to numerically pro-
duce examples of closed magnetic geodesics.

2.1 Example: round sphere
Parameterizing the sphere as

S(u, v) = (cosu cos v, cosu sin v, sinu) ,

the magnetic geodesic system becomes

c =u′2 + v′2 cos2 u ,
cκ = (

u′′v′ − v′′u′) cosu + v′3 cos2 u sinu + 2u′2v′ sinu .

Note that κ = 0 will give great circles of course, and
clearly κ a nonzero constant will give a circle in the sphere
that is not a great circle. κ = sinu can give a curve as in
Fig. 1.

2.2 Example: Clifford torus
Parameterizing the Clifford torus by

S(u, v) =
((√

2 + cosu
)
cos v,

(√
2 + cosu

)
sin v, sinu

)

Fig. 1 A curve with geodesic curvature proportional to sin u, on a
sphere as parametrized in Section 2.1
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yields the system

c =u′2 + v′2 (√
2 + cosu

)2
,

cκ = (
u′′v′ − v′′u′) (√

2 + cosu
)

+ v′ sinu
(
v′2(

√
2 + cosu)2 + 2u′2) .

Two examples of closed geodesics, that is κ = 0,
are given in Fig. 2. Other examples of closed magnetic
geodesics on the Clifford torus are shown in Fig. 3.

2.3 Example: catenoid
Conformally parameterizing the catenoid, with f =
cosh2 u, as

S(u, v) = (coshu cos v, coshu sin v,u) ,

the system becomes

c = (
u′2 + v′2) cosh2 u,

cκ = (
u′′v′ − v′′u′) cosh2 u − sinhu coshu

(
v′3 + u′2v′) .

Examples are found in Fig. 4.

2.4 Example: minimal Enneper surface
The Enneper minimal surface in R

3 can be conformally
parametrized as

S(u, v) =
(
u − 1

3
u3 + uv2,−v + 1

3
v3 − vu2,u2 − v2

)
,

with f = (
1 + u2 + v2

)2. This yields the system

c = (
u′2 + v′2) (

1 + u2 + v2
)2 ,

cκ
1 + u2 + v2

= (
u′′v′ − v′′u′) (

1 + u2 + v2
) + 2

(
u′2 + v′2)

(
vu′ − uv′) .

An example is found in Fig. 5.

2.5 Minkowski 3-space
Let R2,1 denote the Minkowski 3-space {(x, y, s) | x, y, s ∈
R} with Lorentzian metric of signature (+,+,−). Space-
like surfaces with mean curvature identically zero are
called maximal surfaces, and the next example is such
a surface. Our primary result (Theorem 3.1) is about
spacelike surfaces in R

2,1, with singularities at which the
tangent planes become lightlike. Proposition 2.4 is true

for spacelike surfaces in R
2,1 as well, once R

3 is replaced
by R2,1, the cross product for R3 is replaced by the cross
product for R2,1, and the induced connection ∇ for sur-
faces in R

3 is replaced by the induced connection ∇ for
surfaces in R

2,1. The statement is as follows:

Proposition 2.5 Let M ⊂ R
2,1 be a surface. Then

Eq. (1.2) is equivalent to the system

|γ ′|2 = c is constant, (2.8)
1
|n|

〈
γ ′′, γ ′ × n

〉 = κ|γ ′|2, (2.9)

where n denotes a normal to the surface compatible with
J90 and × denotes the cross product in R

2,1.
One set of motivating examples for the result presented

here are maximal surfaces in R
2,1, for which singulari-

ties commonly occur (see, for example, [3]), as in the next
example.

2.6 Example: maximal Enneper surface
In this case we can choose

S(u, v) =
(
u + 1

3
u3 − uv2,−v − 1

3
v3 + vu2, v2 − u2

)

in R
2,1. This parametrization can be obtained from

the Weierstrass-type representation for maximal surfaces
(see, for example, [9]), which states that

S(u, v) = Re
∫ z=u+iv (

1 + g2, i − ig2, 2g
)
η ,

where g is ameromorphic function and η is a holomorphic
1-form on a Riemann surface. This surface is conformally
parametrized wherever it is nonsingular, and has space-
like tangent planes at nonsingular points. The singularities
occur whenever |g| = 1, and the metric for the surface is

(
1 − |g|2)2 |η|2 .

Since, for anymagnetic geodesic γ (t) = S(u(t), v(t)), we
have

c = (
u′2 + v′2) · (

1 − |g|2)2 |η|2 ,
the term u′2 + v′2 would have to diverge whenever γ

approaches a singular point. It follows that magnetic

Fig. 2 Two closed geodesics on the Clifford torus
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Fig. 3 The first picture shows a closed curve with constant non-zero geodesic curvature in the Clifford torus, the second picture a closed curve with
geodesic curvature proportional to sin u in the Clifford torus and the third picture another closed curve with geodesic curvature proportional to
sin u in the Clifford torus

geodesics cannot be extended, as solutions of the mag-
netic geodesic equation, into singular points.
The effect of this fact is that magnetic geodesics tend

to avoid singular points, as we will see in Theorem 3.1.
Examples of magnetic geodesics in the maximal Enneper
surface are shown in Figs. 6, 7 and 8.
Typically, even at their singularities, maximal surfaces

can be described as smooth graphs of functions over
domains in the horizontal spacelike coordinate plane of
R
2,1 (see [4, 7, 8] for example), and thus Theorem 3.1 will

apply to maximal surfaces.

2.7 Example: rotated cycloids
In the case of surfaces in R

3, magnetic geodesics will gen-
erally not avoid singular sets on those surfaces, and the

final example here illustrates this. We consider rotated
cycloids in R

3, which have cuspidal edge singularities. We
choose the following parametrization

S(u, v) = ((2+ cosu) cos v, (2+ cosu) sin v,u− sinu).

The system becomes

c =2u′2(1 − cosu) + v′2(2 + cosu)2,

cκ = (
u′′v′ − v′′u′) √

2
√
1 − cosu(2 + cosu)

+ v′3 sinu(2 + cosu)2√
2
√
1 − cosu

+ u′2v′ (6 − 3 cosu) sinu√
2
√
1 − cosu

.

Fig. 4 The first curve has constant non-zero geodesic curvature on the catenoid, whereas the second closed curve has geodesic curvature
proportional to sin u on the catenoid, as parametrized in Section 2.3
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Fig. 5 A closed curve with constant non-zero geodesic curvature in a
minimal Enneper surface in R

3

An example of a magnetic geodesic that meets the
singular set is shown in Fig. 9.

3 Restrictions for tangency directions ofmagnetic
geodesics passing through a singularity

In our numerical investigations of magnetic geodesics on
the maximal Enneper surface we have seen that magnetic
geodesics avoid the singular set of the surface. In this
section we will prove a result that helps explain this behav-
ior not only on arbitrary maximal surfaces, but on general
spacelike surfaces in R

2,1 at points where the tangent
planes degenerate to become lightlike. More precisely, we
will consider the case that the tangent planeTpM becomes
lightlike and the surface is a graph of a function over

a domain U with immersable boundary ∂U in the hor-
izontal spacelike coordinate plane of R2,1 whose second
derivatives are finite and not all zero at the projection of p
into U .
This is the content of the following theorem:

Theorem 3.1 Suppose that (M, g) is an almost-
everywhere-spacelike smooth surface in R

2,1 that becomes
singular at a non-flat point p ∈ M.
Then there are only at most six directions within TpM to

which any magnetic geodesic meeting p with C1 regularity
and bounded geodesic curvature must be tangent. Two of
these at most six directions are the lightlike directions.

Proof We may parametrize the surface as a graph, that
is S(u, v) = (u, v, f (u, v)) for some function f (u, v), and we
can consider a curve γ (t) = S(u(t), v(t)). The surface is
spacelike, with the exception of a measure zero set in the
surface at which the tangent planes are lightlike. Without
loss of generality, we assume

1. the tangent plane at u = v = 0 is lightlike,
2. the surface is placed in R

2,1 in such a way that

f (0, 0) = 0, fu(0, 0) = 1, fv(0, 0) = 0,

3. the curve γ (t) on the surface satisfies

γ (0) = S(0, 0), u′(0) = cos θ , v′(0) = sin θ

for some value of θ ∈ R \ πZ,
4. the tangent planes to f at the points γ (t) for t > 0

are spacelike.

We assume that γ is a magnetic geodesic, thus 〈γ ′, γ ′〉 is a
positive constant for t > 0. We set

h = (
1 − f 2u − f 2v

)−1 , R = fuuu′2 + 2fuvu′v′ + fvvv′2 .

Fig. 6 A closed curve with constant non-zero geodesic curvature in a maximal Enneper surface, shown in both smaller and larger portions of the
surface. This curve avoids the singular set of the surface
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Fig. 7 A closed geodesic in a maximal Enneper surface in R
2,1, shown in both smaller and larger portions of that surface. Note that this geodesic

also avoids the singular set of the surface

First, we examine the limiting behavior of u′′(t) and
v′′(t) as t approaches 0. Because 〈γ ′, γ ′〉 is constant for
t > 0, by property (3) above we have 〈γ ′, γ ′〉 = sin2 θ for
all t ≥ 0. We can assume |n| = 1 for t > 0. We then have

〈
γ ′′, γ ′〉 = 0 (3.1)

and, by Proposition 2.5,
〈
γ ′′, γ ′ × n

〉 = κ sin2 θ . (3.2)

Writing

γ (t) = (u(t), v(t), f (u(t), v(t)))

and using

γ ′ = (
u′, v′, fuu′ + fvv′) , γ ′′ = (

u′′, v′′,R + fuu′′ + fvv′′) ,

we can take the limit as t → 0 in Eq. 3.1 to obtain the finite
limit

lim
t→0

(
Au′′ + Bv′′) = cos θ · R|t=0 , A = (

1 − f 2u
)
u′

−fufvv′ ,B = (
1 − f 2v

)
v′ − fufvu′ .

Noting that A|t=0 = 0 and B|t=0 = sin θ 
= 0, we see
that only these two cases can occur:

1. u′′ is bounded at t = 0 and limt→0 v′′ = cot θ · R|t=0,
or

2. there exists a sequence tj > 0 converging to zero so
that |u′′(tj)| diverges to infinity and |v′′(tj)/u′′(tj)|
converges to zero as j → ∞.

In the second case, we can obtain the conclusion by
examining

u′′(tj)
(
A|t=tj + (B|t=tj)

v′′(tj)
u′′(tj)

)

as j → ∞.
Note that

n = √
h

(
fu, fv, 1

)
,

Fig. 8 Another closed geodesic in a maximal Enneper surface in R
2,1, again shown in both smaller and larger portions of that surface. Note again

that the geodesic avoids the singular set of the surface
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Fig. 9 A geodesic on a rotated cycloid surface with negative Gaussian
curvature

so

γ ′ × n = √
h

(
fv

(
fuu′ + fvv′) − v′,u′ − fu

(
fuu′ + fvv′) ,

u′fv − v′fu
)
.

Examining the behavior as t → 0 of Eq. 3.2, we see that

T :=
√
h−1(u′v′′ − v′u′′) + √

hR
(
v′fu − u′fv

)

is bounded near t = 0.
In the first case (1) above with bounded u′′, T converges

asymptotically to
√
hR sin θ , and this can be bounded only

if R|t=0 = 0.
In the second case (2) above with unbounded u′′, we can

write T at tj as
(
u′′√h(−h−1(v′ − u′(v′′/u′′)) + (R/u′′)(v′fu − u′fv))

)
|t=tj .

Since u′(tj) and v′(tj) are bounded, and v′′(tj)/u′′(tj) and
h−1(tj) converge to zero, and since (v′fu − u′fv)|t=tj con-
verges to sin θ , as j → ∞, this term is asymptotically equal
to (

√
hR sin θ)|t=tj were R|t=0 
= 0, and again we conclude

T is bounded only if R|t=0 = 0.
Thus, in either case, we must have

(
fuu cos2 θ + 2fuv cos θ sin θ + fvv sin2 θ

) ∣
∣
u=v=0 = 0 .

(3.3)

If fvv 
= 0, resp. fuu 
= 0, the angle θ must satisfy

tan θ = −fuv ± √
f 2uv − fuufvv
fvv

∣
∣
∣
∣
u=v=0

, resp.

cot θ = −fuv ± √
f 2uv − fuufvv
fuu

∣
∣∣
∣
u=v=0

.
(3.4)

If fuu = fvv = 0, then θ = π/2 + kπ for some integer k.

Thus there are at most four possible values for the angle
θ ∈ [0, 2π) in addition to θ = 0,π for which the magnetic
geodesic can approach the singular point p.

Remarks 3.2 Theorem 3.1 can be generalized to almost-
everywhere-spacelike submanifolds of general dimensional
Minkowski spaces, with the corresponding conclusion being
that generically the possible directions in which a mag-
netic geodesic can approach a point with a lightlike tangent
space form a subset in the space of all directions that has
codimension at least 1.
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