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1 Terminologies andmain results
Definition 1.1 (Čech complex) Let X = {x1, x2, . . . , xn}

be a collection of points in R
d. The Čech complex C(X, r),

for r > 0, is constructed as follows.

(i) The 0-simplices (vertices) are the points in X.
(ii) A k-simplex

[
xi0 , . . . , xik

]
is in C(X, r) if

⋂k
j=0 Br(xij) �= ∅.

Here Br(x) = {
y ∈ R

d : ‖y − x‖ ≤ r
}
denotes a ball of

radius r and center x, and ‖x‖ is the Euclidean norm of x.
The Čech complex can be also constructed from an infinite
collection of points.

Let X1,X2, . . . , be a sequence of i.i.d. (independent iden-
tically distributed)Rd-valued random variables with com-
mon probability density function f (x). Define the induced
binomial point processes asXn = {X1, . . . ,Xn}. The object
here is the Čech complex C (Xn, rn) built on Xn, where
the radius rn also varies with n. Denote by βk(K) the kth
Betti number, or the rank of the kth homology group, of
a simplicial complex K. The limiting behaviour of Betti
numbers βk (C (Xn, rn)) in various regimes has been stud-
ied recently by many authors. See [1] for a brief survey.
The aim of this paper is to refine a limit theorem in the
thermodynamic regime, a regime that n1/drn → r ∈
(0,∞).
In the thermodynamic regime, the expectations of the

kth Betti numbers, for 1 ≤ k ≤ d − 1, grow linearly in n,
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that is, c1n ≤ E [βk (C (Xn, rn))] ≤ c2n as n → ∞. After
centralizing, the strong law of large numbers holds,

1
n

(βk (C (Xn, rn)) −E [βk (C (Xn, rn))])

→ 0 almost surely as n → ∞,
(1)

provided that the density function f has compact, con-
vex support and that on the support of f, it is bounded
both below and above [9, Theorem 4.6]. A remaining
problem is to describe the exact limiting behaviour of the
expected values of the Betti numbers. This paper gives a
solution to that problem. Note that the 0th Betti number
which counts connected components in a random geo-
metric graph was completely described [5, Chapter 13].
Note also that the kth Betti number of the Čech complex
built on a finite set of points in R

d is vanishing, if k ≥ d.
These facts explain why we only need to consider the case
1 ≤ k ≤ d − 1.
Betti numbers are tightly related to the number of j-

simplices in C(X, r), denoted by Sj(C(X, r)) or simply by
Sj(X, r), which can be expressed as

Sj(X, r) = 1
j + 1

∑

x∈X
ξ(x,X),

where ξ(x,X) is the number of j-simplices containing x.
Note that ξ(x,X) is a local function in the sense that it
depends only on points near x. Then in the thermody-
namic regime, the weak and strong laws of large numbers
for Sj(C(Xn, rn)) hold as a consequence of general results
in [6, 7],

Sj (Xn, rn)
n

→ Ŝj(r) almost surely as n → ∞.

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40736-017-0029-0&domain=pdf
mailto: trinh@imi.kyushu-u.ac.jp
http://creativecommons.org/licenses/by/4.0/


Trinh Pacific Journal of Mathematics for Industry  (2017) 9:4 Page 2 of 7

The limit Ŝj(r) can be explicitly calculated. However, Betti
numbers do not have expression like the above form, and
hence those general results can not be applied.
To establish a limit theorem for Betti numbers, we

exploit the following two properties. The first one is the
nearly additive property of Betti numbers that was used in
[9] to study Betti numbers of Čech complexes built on sta-
tionary point processes. The second one is the property
that binomial point processes behave locally like a homo-
geneous Poisson point process. The latter property is also
a key tool to establish the law of large numbers for local
geometric functionals [6, 7].
Now let us get intomore detail to state themain result of

the paper. We begin with the definition of a homogeneous
Poisson point process. Let N be the set of all counting
measures onR

d which are finite on any bounded Borel set
and for which the measure of a point is at most 1. Define
N as the σ -algebra generated by sets of the form

{μ ∈ N : μ(A) = k} ,
where A is a bounded Borel set and k is an integer. Then
a point process � is a measurable mapping from some
probability space into (N,N ). For a Borel set A, let �(A)

denote the number of points in A. By definition of the
σ -algebra N , �(A) becomes a usual random variable. A
homogeneous Poisson point process is defined as follows.
For some basic properties of point processes, see [2], for
example.

Definition 1.2 (Homogeneous Poisson point process)
The point process P is said to be a Poisson point process
with density λ > 0 if

(i) for disjoint Borel sets A1, . . . ,Ak , the random
variables P(A1), . . . ,P(Ak) are independent;

(ii) for any bounded Borel set A, the number of points in
A has Poisson distribution with parameter |A|,
P(A) ∼ Pois (λ|A|), that is,

P(P(A) = k) = e−λ|A| λk|A|k
k!

, k = 0, 1, . . . ,

where |A| denotes the Lebesgue measure of A.

For homogeneous Poisson point processes, the follow-
ing law of large numbers for Betti numbers was estab-
lished in [9]. Let P(λ) be a homogeneous Poisson point
process on R

d with density λ > 0. Denote by PA(λ) the
restriction of P(λ) on a Borel set A. For simplicity, we
write PL(λ) instead of PWL(λ) when WL is a window of
the form WL =[−L1/d

2 , L1/d2 )d. Then for 1 ≤ k ≤ d − 1,
there is a constant β̂k(λ, r) such that [9, Theorem 3.5],

βk (C (PL(λ), r))
L

→ β̂k(λ, r) almost surely as L → ∞.

The Poisson point process P(0) is understood as a point
process with no point. Thus we set β̂k(0, r) = 0 for all
r > 0. Now we can state our main result.

Theorem 1.3 Assume that the common probability den-
sity function f (x) has compact support, is bounded and
Riemann integrable. Then as n → ∞ with n1/drn → r ∈
(0,∞),

E [βk (C (Xn, rn))]
n

→
∫

Rd
β̂k
(
f (x), r

)
dx.

Consequently, together with (1), we have the following
law of large numbers.

Corollary 1.4 Assume that the support of f is compact
and convex and that

0 < inf
x∈supp(f )

f (x) ≤ sup
x∈supp(f )

f (x) < ∞.

Assume further that f is Riemann integrable. Then for
1 ≤ k ≤ d − 1,

βk (C (Xn, rn))
n

→
∫

Rd
β̂k(f (x), r)dx almost surely as n →∞.

(2)

It is noted that the method here can be applied to
show the convergence of persistence diagrams of Čech
complexes built on binomial point processes. The conver-
gence of Betti numbers and persistence diagrams related
to i.i.d. sampling were observed in [4] by numerical simu-
lation. Here we give a rigorous mathematical proof of the
convergences.
For the proof, we need a Poissonized version of the

binomial processes. Let Nn be a random variable which is
independent of {Xn}n≥1 and has Poisson distribution with
parameter n. Let

P̄n = {
X1,X2, . . . ,XNn

}
.

Then P̄n becomes a non-homogeneous Poisson point
process with intensity function nf (x). Here a non-
homogeneous Poisson point process is defined as follows.

Definition 1.5 (Non-homogeneous Poisson point pro-
cess) Let f (x) ≥ 0 be a locally integrable function on R

d.
The point process P is said to be a (non-homogeneous)
Poisson point process with intensity function f (x) if

(i) for disjoint Borel sets A1, . . . ,Ak , the random
variables P (A1) , . . . ,P (Ak) are independent;

(ii) for any bounded Borel set A,
P(A) ∼ Pois

(∫
A f (x)dx

)
.

As proved later, Theorem 1.3 is equivalent to the follow-
ing result.
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Theorem 1.6 Assume that the common probability den-
sity function f (x) has compact support, is bounded and
Riemann integrable. Then as n → ∞ with n1/drn → r ∈
(0,∞),

E
[
βk
(
C
(
P̄n, rn

))]

n
→

∫

Rd
β̂k
(
f (x), r

)
dx.

All the proofs will be given in Section 3 after dis-
cussing some basic properties of Betti numbers in the next
section.

2 Simplicial complexes and Betti numbers
This section introduces some basic concepts in algebraic
topology such as simplicial complexes and Betti numbers.
It is mainly taken from the book [3].
An abstract simplicial complex K on a finite set V is

a collection of nonempty subsets of V which is closed
under inclusion relation, that is, if σ ∈ K, then τ ∈ K
for any nonempty subset τ ⊂ σ . An element σ ∈ K with
|σ | = k + 1 is called a k-simplex or a simplex of dimen-
sion k. A 0-simplex (resp. 1-simplex) is usually called a
vertex (resp. edge). Čech complexes are examples of geo-
metric complexes which are constructed over points in
some metric space with respect to certain conditions.
We assign orientations on simplices in the following

way. For a k-simplex σ = {v0, . . . , vk} with k > 0, define
two orderings of its vertex set to be equivalent if they dif-
fer from one other by an even permutation. The orderings
of the vertices of σ then fall into two equivalent classes.
Each of these classes is called an orientation of σ .Wewrite
〈v0, . . . , vk〉 for an oriented simplex. Let us fix an ordering
of the vertex set V. Then the notation 〈σ 〉 means the ori-
ented simplex which belongs to the equivalent class of a
natural ordering. A 0-simplex has only one orientation.
Let F be a field. For each k, let

Ck(K) =
{∑

αi 〈σi〉 : αi ∈ F, σi ∈ Kk
}

be a vector space with the basis {〈σ 〉 : σ ∈ Kk}, where Kk
is the set of all k-simplices inK. The space Ck(K) is called
a chain group.
The dimension of K, denoted by dim(K), is defined to

be themaximumdimension of simplices inK. For 1 ≤ k ≤
dim(K), a boundary operator ∂k : Ck(K) → Ck−1(K) is a
linearmapwhose value on an oriented simplex 〈v0, . . . , vk〉
is given by

∂k (〈v0, . . . , vk〉) =
k∑

i=0
(−1)k

〈
v0, . . . , v̂i, . . . , vk

〉
,

where the symbol ˆ over vi indicates that the vertex is
removed from the sequence. Then we get a chain

0 −→ Cdim(K)

∂dim(K)−→ · · · −→ Ck+1(K)
∂k+1−→

Ck(K)
∂k−→ Ck−1(K) −→ · · · ∂1−→ C0(K) −→ 0.

The subspaces Bk(K) := Im∂k+1 and Zk(K) := ker ∂k are
called the kth boundary group and the kth cycle group,
respectively. By definition, it is straightforward to show
that ∂k ◦ ∂k+1 = 0. Thus Bk(K) becomes a subspace of Zk .
The quotient space

Hk(K) = Zk(K)/Bk(K)

is called the kth homology group of K, and its rank is the
kth Betti number,

βk(K) = rankHk(K).

In computational topology, it is convenient to consider the
case where F = F2 = {0, 1} because in this case we do not
need orientations of simplices.
Let Ak be the matrix representation of the boundary

operator ∂k with respect to the standard bases Kk and
Kk−1. It is clear that Ak is a fk−1 × fk matrix with {0,±1}-
coefficients, where fk = dim (Ck(K)) = |Kk|. Then the
kth Betti number can be expressed as

βk(K)=dim (kerAk)−rankAk+1= fk−rankAk−rankAk+1.
(3)

Let {K(i)}i∈I be a finite collection of disjoint simplicial
complexes. Then ∪i∈IK(i) becomes a simplicial complex.
We easily see that

βk

(
⋃

i∈I
K(i)

)

=
∑

i∈I
βk
(
K(i)

)
. (4)

Next assume that K is a sub-complex of K̃, that is,
K ⊂ K̃. We use symbols like β̃k , f̃k and Ãk to denote corre-
sponding quantities of K̃. By arranging the basis in Ck(K̃)

such that first elements coincide with the elements in the
basis of Ck(K), the matrix Ãk has the following form

Ãk =
(

Ak
0 ∗

)
.

It then follows that 0 ≤ rank Ãk − rankAk ≤ f̃k − fk .
This inequality, together with the relation (3), implies the
following result ([9, Lemma 2.2]).

Lemma 2.1 Let K, K̃ be two finite simplicial complexes
such that K ⊂ K̃. Then for every k ≥ 1,

∣∣∣βk(K) − βk(K̃)

∣∣∣ ≤
k+1∑

j=k
#
{
j−simplices in K̃ \ K

}
. (5)
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We have mentioned that Betti numbers are nearly addi-
tive because of the two properties (4) and (5). Note that
β0 counts the number of connected components in the
undirected graph G = (V ,E), where E = K1, which is
independent of the underlying field F.

3 Proofs of main theorems
We will use the following two important properties of
Poisson point processes. Denote by P(f (x)) the non-
homogeneous Poisson point process with intensity func-
tion f (x).

(i) Scaling property. For any θ > 0 and t ∈ R
d ,

θ(P(f (x)) − t) d= P(θ−df (t + θ−1x)),

where ‘ d=’ denotes the equality in distribution. In
particular, θ(P(λ) − t) d= P(θ−dλ).

(ii) Coupling property. Let P(g(x)) be a Poisson point
process with intensity function g(x) which is
independent of P(f (x)). Then

P(f (x)) + P(g(x)) d= P(f (x) + g(x)).

Here ‘+’ means the superposition of two point
processes.

We begin with a result for the simplices counting
function.

Lemma 3.1 (cf. [9, Lemma 3.2]) Let Sj(λ, r; L) be the
number of j-simplices in C(PL(λ), r). Then for fixed r > 0,

E
[
Sj(λ, r; L)

]

L
→ Ŝj(λ, r) as L→∞,uniformly for 0≤λ≤�.

In addition, for fixed r, the limit Ŝj(λ, r) is a continuous
function of λ on [ 0,∞).

Proof For convenience, let Al(λ) := Sj
(
λ, r; ld

) =
Sj
(
C
(
PVl (λ), r

))
, where Vl =[− l

2 ,
l
2 )

d. Our aim now is to
show that

E [Al(λ)]
ld

uniformly converges for λ ∈ [0,�] as l → ∞,

and that E [Al(λ)] is continuous for λ ∈ [0,∞). Let us first
show the continuity of E [Al(λ)]. For 0 ≤ λ < μ, we
use the coupling P(μ) = P(λ) + P(μ − λ). Here P(λ)

and P(μ − λ) are two independent Poisson point pro-
cesses with densities λ and (μ − λ), respectively. Let Nλ

(resp. Nμ;λ) be the number of points of P(λ) (resp. P(μ −
λ)) in Vl, which has Poisson distribution with parameter
λld (resp. (μ − λ)ld). Then the continuity follows from a
trivial estimate

0 ≤ Al(μ) − Al(λ) ≤ Nμ;λ
(
Nμ;λ + Nλ

)j .

Next, we show the uniform convergence. The proof
here is similar to that of the pointwise convergence
([9, Lemma 3.2]). Define the function

h(P(λ)) := 1
j + 1

∑

x∈P1(λ)

#[ j-simplices in C(P(λ), r) containing x].

(6)

Then for l > 4r + 1,
∑

z∈Zd∩Vl−4r−1

h(P(λ)−z) ≤ Al(λ) ≤
∑

z∈Zd∩Vl+1

h(P(λ)−z).

Consequently, by the stationality of the Poisson point
process P(λ),

(l−4r−2)dE [h(P(λ))]≤ E [Al(λ)] ≤ (l+2)dE [h(P(λ))] .

Note that E [h(P(λ))] is non-decreasing in λ and for any
λ > 0,

E [h(P(λ))]≤ E
[
P (λ;V1+4r)

j+1] < ∞.

HereP(λ;V1+4r) is the number of points ofP(λ) inV1+4r .
Therefore uniformly for 0 ≤ λ ≤ �,

E [Al(λ)]
ld

→ E [h(P(λ))] as l → ∞.

The proof is complete.

For the sake of simplicity, we denote by βk(λ, r; L) the
kth Betti number of the Čech complex C(PWL(λ), r),
whereWL is any rectangle of the form x+[−L1/d

2 , L1/d2 )d.

Lemma 3.2 For fixed r > 0, uniformly for 0 ≤ λ ≤ �,
E [βk(λ, r; L)]

L
→ β̂k(λ, r) as L → ∞.

The limit β̂k(λ, r) has the following scaling property,

β̂k(λ, r) = 1
θ
β̂k

(
λθ ,

r
θ1/d

)
, for any θ > 0.

In particular, β̂k(λ, r) = λβ̂k
(
1, λ1/dr

)
is a continuous

function in both λ and r, and β̂(λ, r) > 0, if λ > 0 and
r > 0.

Proof For fixed r > 0 and fixed λ > 0, the conver-
gence of the expectations of Betti numbers was shown
in [9, Lemma 3.3]. The positivity is a consequence of
[8, Theorem 4.2]. Here we will show the uniform conver-
gence for 0 ≤ λ ≤ �. We use the following criterion
for the uniform convergence on a compact set, which is
related to the Arzelà–Ascoli theorem. The sequence of
continuous functions {aL(λ)}L>0 converges uniformly on
[0,�] if and only if it converges pointwise and is equicon-
tinuous, that is, for any ε > 0, there are δ > 0 and L0 > 0
such that
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|aL (λ1) −aL (λ2)| < ε for all λ1, λ2 ∈ [0,�] ,
|λ1 − λ2| < δ, and all L > L0.

(7)

Our task now is to show that the sequence{
L−1

E [βk(λ, r; L)]
}
is equicontinuous. Let λ < μ. By

using the coupling P(μ) = P(λ) + P(μ − λ), the
Čech complex C(PL(λ), r) becomes a sub-complex of
C (PL(μ), r). Thus, by Lemma 2.1,

|βk(μ, r; L) −βk(λ, r; L)|

≤
k+1∑

j=k
#
{
j-simplices in C(PL(μ), r) \ C(PL(λ), r)

}

=
k+1∑

j=k

(
Sj(μ, r; L) − Sj(λ, r; L)

)
.

(8)

Therefore
∣∣
∣∣
E[βk(μ, r; L)]

L
− E[βk(λ, r; L)]

L

∣∣∣∣

≤
k+1∑

j=k

(
E
[
Sj(μ, r; L)

]

L
− E

[
Sj(λ, r; L)

]

L

)

.
(9)

The sequence
{
L−1

E
[
Sj(λ, r; L)

]}
converges uniformly

on [0,�] by Lemma 3.1, and hence, is equicontinuous,
which then implies the equicontinuity of the sequence{
L−1

E [βk(λ, r; L)]
}
.

By observing that θ−1/dP(λ) has the same distribution
with P(λθ), we obtain the scaling property of β̂k(λ, r).
It then follows from the scaling property that β̂k(λ, r) is
continuous in both λ and r. The lemma is proved.

Let us now consider the scaled Poissonized version

Pn =
{
n1/dX1, n1/dX2, . . . , n1/dXNn

}
.

Recall that Nn is independent of {Xn} and has Pois-
son distribution with parameter n. Then Pn = n1/dP̄n
is a non-homogeneous Poisson point process with the
intensity function fn(x) := f

(
x/n1/d

)
. It is clear that

C
(
Pn, n1/drn

) ∼= C
(
P̄n, rn

)
. Thus Theorem 1.6 can be

rewritten as follows.

Theorem 3.3 Assume that the common probability den-
sity function f (x) has compact support, is bounded and
Riemann integrable. Then in the regime that r̃n → r ∈
(0,∞),

E
[
βk (C (Pn, r̃n))

]

n
→

∫

Rd
β̂k(f (x), r)dx

=
∫

Rd
β̂k
(
1, f (x)1/dr

)
f (x)dx as n→∞.

(10)

Remark 3.4. Note that P ′
n = (r/r̃n)Pn is also a non-

homogeneous Poisson point process. Moreover, as a result
of scaling, C (Pn, r̃n) ∼= C

(
P ′
n, r

)
. Thus it is enough to

prove Theorem 3.3 with r̃n = r.

Lemma 3.5 Assume that f (x), g(x) ≤ � in WL, where
WL ⊂ R

d is any Borel set of volume L. Then there exists a
constant c = c(k,�L) such that
∣∣E
[
βk
(
C
(
PWL(f (x)), r

))] −E
[
βk
(
C
(
PWL(g(x)), r

))]∣∣

≤ c
∫

WL

∣∣f (x) − g(x)
∣∣ dx.

(11)

Proof By considering f (x) := f (x)|WL and g(x) :=
g(x)|WL , we omit the subscriptWL in formulae. Let h(x) =
max{f (x), g(x)}. A key idea here is the following coupling

P(h(x)) = P(f (x)) + P(h(x) − f (x)).

Let t = ∫
(h(x) − f (x))dx = ∫

(g(x) − f (x))+dx and Nt
be the number of points of P(h(x) − f (x)) in WL. Then
Nt has Poisson distribution with parameter t. The total
number of points of P(h(x)) is bounded by Nt + N�L−t ,
where N�L−t has Poisson distribution with parameter
(�L − t) which is independent of Nt . It now follows from
Lemma 2.1 that

∣
∣βk(C(P(f (x)), r)) − βk (C(P(h(x)), r))

∣∣

≤
k+1∑

j=k
Sj
(
C(P(h(x)), r) \ C(P(f (x)), r)

)

≤ 2Nt (Nt + N�L−t)
k+1 ,

and hence,
∣∣E
[
βk(C(P(f (x)), r))

]− E [βk(C(P(h(x)), r))]
∣∣

≤ 2E
[
Nt (Nt + N�L−t)

k+1
]
.

(12)

The right hand side is a polynomial of t whose smallest
order is 1 and note that t ≤ �L, thus it is bounded by ct,
where the constant c = c(k,�L) depends only on k and
�L, namely we have
∣∣E
[
βk(C(P(f (x)), r))

]− E [βk(C(P(h(x)), r))]
∣∣

≤ c
∫

(g(x) − f (x))+dx.
(13)

An analogous estimate holds when we compare the kth
Betti number of C(P(g(x)), r) and that of C(P(h(x)), r).
The proof is complete.

Proof of Theorem 3.3 Let S be the support of f and � :=
sup f (x). Divide R

d according to the lattice (L/n)1/dZd

and let {Ci} be the cubes which intersect with S. Since we
also consider the Poisson point process with density 0, we
may assume that S = ∪iCi.
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Let Wi be the image of Ci under the map x �→ n1/dx.
Then Wi is a cube of length L1/d. Let βk(Wi, r) be the
kth Betti number of C(Pn|Wi , r). We now compare the
kth Betti number of C(Pn, r) and that of ∪iC(Pn|Wi , r) by
taking into account Lemma 2.1,
∣∣
∣∣
∣
βk (C(Pn, r))−βk

(
⋃

i
C
(
Pn|Wi , r

)
)∣∣∣
∣∣
≤

k+1∑

j=k
Sj

(

C(Pn, r)\
⋃

i
C
(
Pn|Wi , r

)
)

≤
k+1∑

j=k
Sj
(
Pn, r;∪i (∂Wi)

(2r)
)
.

Here Sj (Pn, r;A) is the number of j-simplices in C (Pn, r)
which has a vertex in A, ∂A denotes the boundary of the
set A and A(2r) is the set of points with distance at most
2r from A. The second inequality holds because any sim-
plex in C (Pn, r) \ ∪iC(Pn|Wi , r) must have a vertex in
∪i (∂Wi)

(2r).
Next, by the coupling P(�) = Pn +P

(
� − f

(
x/n1/d

))
,

it follows that for any bounded Borel set A,

E
[
Sj (Pn, r;A)

] ≤ E
[
Sj(P(�), r;A)

]

≤ E

⎡

⎣
∑

x∈P(�)∩A
P (�;B2r(x))j

⎤

⎦ =: μ�,r,j(A) < ∞.

It turns out that μ�,r,j becomes a translation invariant
measure on R

d which is finite on bounded Borel sets.
Thus μ�,r,j(A) = c(�, r, j)|A| for some constant c(�, r, j)
depending only on �, r and j. Now by taking the expecta-
tion in (5), we get

∣
∣∣∣∣
E [βk (C (Pn, r))] −

∑

i
E
[
βk
(
C
(
Pn|Wi , r

))]
∣∣∣∣
∣

≤ c
∑

i

∣∣∣(∂Wi)
(2r)

∣∣∣ ≤ c′ n|S|
L

L(d−1)/d = c′ n|S|
L1/d

,

where c and c′ are constants which do not depend on n
and L. Therefore,

lim sup
n→∞

∣∣
∣∣∣
E [βk (C (Pn, r))]

n
− 1

n
∑

i
E [βk (Wi, r)]

∣
∣∣∣∣
≤c′ |S|

L1/d
.

(14)

Let f ∗
i := supx∈Ci f (x) and βk

(
f ∗
i , r; L

)
be the kth Betti

number of the Čech complex built on a homogeneous
Poisson point process PWi

(
f ∗
i
)
with density f ∗

i restricted
onWi. Then by Lemma 3.5,

∣∣E[βk(Wi, r)]−E
[
βk
(
f ∗
i , r; L

)]∣∣≤c(k,�L)

∫

Wi

(
f ∗
i −f

(
x/n1/d

))
dx

= c(k,�L)n
∫

Ci

(
f ∗
i − f (x)

)
dx.

Here c(k,�L) is the constant in Lemma 3.5. Consequently,
∣∣∣∣∣
1
n
∑

i
E [βk(Wi, r)] − 1

n
∑

i
E
[
βk
(
f ∗
i , r; L

)]
∣∣∣∣∣

≤ c(k,�L)
∑

i

∫

Ci

(
f ∗
i − f (x)

)
dx → 0 as n → ∞,

because the function f (x) is assumed to be Riemann
integrable.
By comparing E

[
βk
(
f ∗
i , r; L

)]
with the limit β̂k(λ, r), we

get
∣∣∣∣∣
1
n
∑

i
E
[
βk
(
f ∗
i , r; L

)]− L
n
∑

i
β̂k
(
f ∗
i , r

)
∣∣∣∣∣

≤ L
n
# {Ci} sup

0≤λ≤�

∣∣∣
∣
E[βk(λ, r; L)]

L
− β̂k(λ, r)

∣∣∣
∣

= |S| sup
0≤λ≤�

∣∣
∣∣
E[βk(λ, r; L)]

L
− β̂k(λ, r)

∣∣∣
∣ .

Note that for fixed L, as n → ∞,
∑

i
β̂k
(
f ∗
i , r

) L
n

→
∫

S
β̂k(f (x), r)dx.

Therefore

lim sup
n→∞

∣∣
∣∣∣
1
n
∑

i
E[βk(Wi, r)] −

∫

S
β̂k(f (x), r)dx

∣∣∣∣
∣

≤ |S| sup
0≤λ≤�

∣∣
∣∣
E[βk(λ, r; L)]

L
− β̂k(λ, r)

∣∣∣
∣ . (15)

Combining the two estimates (14) and (15) and then let
L → ∞, we get the desired result. The proof is complete.

The result for binomial point processes will follow from
Theorem 1.6 and the following result.

Lemma 3.6 As n → ∞ with n1/drn → r,
∣∣
∣∣∣
E
[
βk
(
C(P̄n, rn)

)]

n
− E[βk (C (Xn, rn))]

n

∣∣∣∣∣
→ 0.

Proof By Lemma 2.1 again, we have,
∣∣βk

(
C
(
P̄n, rn

))− βk (C (Xn, rn))
∣∣

≤
k+1∑

j=k

∣∣Sj
(
C
(
P̄n, rn

))− Sj (C (Xn, rn))
∣∣ .

The right hand side, divided by n, converges to 0 as a con-
sequence of general results in [6, 7] applied to Sj. Here we
will give an easy proof.
For anym, let

Sj(m, n) = ∣∣Sj (C (Xm, rn)) − Sj (C (Xn, rn))
∣∣ .
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Since the probability density function f (x) is bounded,
in the regime that n1/drn → r, the probability that
{X1 ∈ Bx(rn)} is bounded by

P (X1 ∈ Bx (rn)) ≤ c
n
,

for some constant c which does not depend on n.
For m > n ≥ j, since each j-simplex in

C (Xm, rn) \ C (Xn, rn) must contain at least one vertex in
{Xn+1, . . . ,Xm}, we have
E
[
Sj(m, n)

] ≤ (m − n)E
[
#
{
j-simplices in C(Xm, rn)containing Xm

}]

≤ (m − n)

(
m
j

)
P
(
X1 ∈ BXm (rn), . . . ,Xj ∈ BXm (rn)

)

≤ (m − n)
m!

j! (m − j)!

( c
n

)j

≤ c1(m − n)
(m
n

)j
.

When j ≤ m < n, we change the role ofm and n to get

E
[
Sj(m, n)

] ≤ (n − m)

(
n
j

)( c
n

)j ≤ c2(n − m).

Combining two estimates, we have

E
[
Sj(m, n)

] ≤ c3|m − n|
[
1 +

(m
n

)j]
.

Therefore,

E
[∣∣Sj

(
C
(
P̄n, rn

))− Sj (C (Xn, rn))
∣∣]

≤ c3E
[
|Nn − n|

(
1 + (Nn)

j

nj

)]

≤ c3E
[
(Nn − n)2

]1/2
E

[(
1 + (Nn)j

nj

)2]1/2
.

Here in the last inequality, we have used the Cauchy–
Schwarz inequality. Note that E

[
(Nn)

j] is a polynomial in
n of degree j. Thus the second factor in the above estimate
remains bounded as n → ∞. Note also that

E
[
(Nn − n)2

] = Var [Nn] = n.

Therefore,

E
[∣∣Sj

(
C
(
P̄n, rn

))−Sj (C(Xn, rn))
∣∣]

n
≤ c4
n1/2

→ 0 as n → ∞,

which completes the proof of Lemma 3.6.
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