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Abstract

Characteristics of numerically-obtained typical distributions of a two-dimensional point vortex system after a violent
relaxation at positive and negative temperatures are examined. It is anticipated that like gravitational N-body systems,
the point vortex system rapidly relaxes to a state near the thermal equilibrium state by the violent relaxation and after
that the system evolves toward the genuine thermal equilibrium state driven by a collisional slow process (the slow
relaxation). The time scale of the slow relaxation is proportional to the number of the point vortices. Namely, it takes a
very long time to reach the final thermal equilibrium state. The detailed mechanism of the violent and slow
relaxations are still unclear. In this paper, we examine the mechanism of the slow relaxation numerically. When the
system temperature determined by the initial system energy is negative, the system evolves to a state consisting of
many small areas with different temperatures by the violent relaxation. In this state, the vorticity is determined as a
function of the stream function, which means that the motion of the vortices across an isosurface of the stream
function is restricted. Due to this restriction, the collisional relaxation process following the violent relaxation is slow.
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1 Introduction
Characteristics of numerically-obtained typical distribu-
tions of a two-dimensional (2D) point vortex system after
a violent relaxation at positive and negative temperatures
are examined [7].
The point vortex model is a simple tool for investiga-

tions of 2D turbulence. In point vortex simulations, Biot-
Savart integral is required to determine a velocity field
from the distribution of the point vortices. Its calculation
cost is proportional to N2 where N is the total number
of point vortices. Typically it may take several months
for point vortex simulations using a normal PCs with
104 vortices. To overcome this difficulty, we use a GPU
(Graphics Processing Unit) to accelerate the calculation
of the Biot-Savart integral. GPU has multiple processing
units that operate simultaneously and provides an on-site,
facile supercomputing environment for a relatively low
cost.
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A motivation of this research is to understand the
kinetic theory of the 2D point vortex system which
describes the relaxation process toward a Boltzmann-type
thermal equilibrium state, especially under the negative
absolute temperature. It has been anticipated that like
gravitational N-body systems, the point vortex system
rapidly relaxes to a state near a thermal equilibrium state
by the (collisionless) violent relaxation [2,5]. After the vio-
lent relaxation, the system evolves to the genuine thermal
equilibrium state described by the sinh-Poisson equation
[4] through a collisional slow relaxation. Its time scale
can be proportional to the number of the point vor-
tices. The point vortex gives a formal solution of the 2D
inviscid Euler equation. However, it has been anticipated
that there is an viscous effect due to the discrete, point-
wise distribution of the vortices [1,3]. It is likely that the
slow relaxation is driven by the viscous effect. In this
paper, we numerically examine the mechanism of the slow
relaxation following the violent relaxation.
When the system temperature determined by the ini-

tial system energy is negative, the system consists of
many small areas with different temperatures after the
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violent relaxation. In this state, the vorticity is determined
as a function of the stream function, in other words,
∇ · (uω) = 0 where u is the velocity field and ω is the vor-
ticity. This means that the motion of the vortices across
an isosurface of the stream function is restricted. It is con-
cluded that this may be a reason why the relaxation after
the violent relaxation is slow.

2 Point vortex system
Let us consider a system consisting of N/2 positive and
N/2 negative point vortices confined in a circular area
with radius R

ω(r, t) = ω+(r, t) + ω−(r, t), (1)

ω+ ≡
N/2∑
i=1

�δ(r − ri), (2)

ω− ≡ −
N∑

i=N/2+1
�δ(r − ri). (3)

The circulation of the i-th point vortex �i locating at
ri is either � or −� where � is a positive constant.
Equation (1) is a formal solution of the 2D inviscid, incom-
pressible Euler equation:

∂ω

∂t
+ ∇ · (uω) = 0. (4)

Motion of the point vortices at ri = (xi, yi) obeys the
following equation of motion:

�i
dxi
dt

= ∂H
∂yi

, �i
dyi
dt

= −∂H
∂xi

, (5)

or equivalently the Biot-Savart integral

dri
dt

= − 1
2π

∑
j �=i

�j
(ri − rj) × ẑ

|ri − rj|2

− 1
2π

∑
j

�j
(ri − r̄j) × ẑ

|ri − r̄j|2 .
(6)

Here, H is the Hamiltonian representing the total sys-
tem energy

H = − 1
4π

∑
i

∑
j �=i

�i�j ln |ri − rj|

+ 1
4π

∑
i

∑
j

�i�j ln |ri − r̄j|

− 1
4π

∑
i

∑
j

�i�j ln
R
|rj|

(7)

and ẑ is the unit vector in z direction. The effect of the
circular wall is introduced by the image vortex at r̄i =
R2ri/|ri|2.

Figure 1 Typical time evolution of the point vortices at the
positive temperature. Red and blue points correspond to the
positive and negative point vortices, respectively. Initial distribution
consists of 20 small clumps. As they overlap each other, the contour
looks like a doughnut.
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3 Negative absolute temperature of point vortex
system

In 1949, Onsager proposed the negative temperature state
for the point vortex system to understand the large-scale
structure formation, in other words, the inverse-cascade
[6]. By analogy between the usual canonical equation of
motion and equation (5), phase space variables for the
point vortex system are xi and yi as the configuration
space and the phase space are identical. If N vortices are
confined in a finite space with areaA, the total phase space
volume is limited to AN < ∞, which implies that the
density of state W (E) equals zero as the system energy
E → ∞. Thus, the density of state has a peak at certain
energy E0 and dW/dE is negative at E > E0, namely, the
sign of the inverse temperature β is negative

β = d logW (E)

dE
< 0 (8)

where the Boltzmann principle which defines the relation
between the density of state and the entropy is assumed.
This is a key mechanism that the 2D point vortex system
confined in a finite area has a negative temperature state.

4 Simulation results
4.1 Typical distributions after violent relaxation
Distributions after the violent relaxation at positive and
negative temperatures are obtained time asymptotically
by numerical simulations using GPUs. Temperature is
controlled by the initial system energy, namely, by the
initial distribution of the vortices which is given artifi-
cially. Because of the violent relaxation, dependency on
the initial artificial distribution is lost and after the vio-
lent relaxation, the distribution gradually approach the
thermal equilibrium one. Typical time evolutions of the
point vortices at the positive and negative temperatures
are given in Figures 1 and 2.
At negative temperature like-sign vortices tend to clus-

ter very rapidly by the violent relaxation and make two
clumps exclusively consisting of the same-sign vortices.
The self-rotation time scale of the clumps is approximately
T ∼ 10. At the beginning of the simulation, the clumps
form within the time scale of T ∼ 10 which is regarded as
the time scale of the violent relaxation. After the violent
relaxation, the clump distribution quasi-statically main-
tains up to T = 200 which is the end of the simulation.
On the other hand, at positive temperature both types
of vortices spread over the circular area uniformly. There
is no rapid relaxation process as the value of the stream
function is almost zero due to the uniform and symmetric
distributions of the positive and negative vortices. Thus,
the induced velocity is almost zero everywhere in the
circular domain.

Figure 2 Typical time evolution of the point vortices at the
negative temperature. As the system energy is high, the
temperature can be negative and condensation of the same-sign
vortices is possible.
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4.2 Observation of local temperature via population of
the vortices

Local temperature of the point vortex system is deter-
mined by a population (histogram) as a function of energy
of each point vortex ψi defined by

H = 1
2

∑
i

�iψi, (9)

ψi = − 1
2π

∑
j �=i

�j log |ri − rj| + 1
2π

∑
j

�j log |ri − r̄j|

− 1
2π

∑
j

�j log
R
|rj|

(10)

Function ψi is the stream function at ri which corre-
sponds to the energy possessed by the i-th point vortex.
The reason why the temperature is observed by the pop-

ulation ψi is as follows. Let us introduce notations N+(E)

andN−(E) that represent the number of the point vortices
whose energy is in the range of E ∼ E + 	E. The value of
N±(E) with E ≈ �ψi/2 can be determined explicitly from
a numerically-obtained distribution of the vortices.
On the other hand, N±(E) can be defined by

N±(E) =
∫
D(E)

ω±(r, t)
±�

dr. (11)

where a region in which the relation

E ≤ ±�ψ(r)
2

≤ E + 	E (12)

is satisfied is denoted by D(E). In double sign notation (±
and∓) the upper sign corresponds to the other upper sign
and vice versa. The value of the stream function satisfying
the inequality (12) will be denoted by 
 ,


 ≈ 2
±�

E. (13)

In a quasi-stationary state, vorticity ω+ and ω− are
functions of the stream function ψ , namely

ω± = ω±(ψ). (14)

The evidence of the above relation will be demonstrated
later. Inside the region D(E), vorticity is given by ω± =
ω±(
) that is approximately constant. Inserting this into
equation (11), we obtain

N±(E) =
∫
D(E)

ω±(
)

±�
dr

= ω±(
)

±�

∫
D(E)

dr.
(15)

The integral in the last formula gives the area of the
region D(E). The local equilibrium distribution is given
by

ω±(
) = ω0± exp(∓β(r)�
) (16)

where ω0± are constants and β(r) is the (local) temper-
ature at r. Inserting equation (16) into (15), we finally
obtain

N±(E)∫
D(E)

dr
= ω0±

±�
exp(∓β(r)�
). (17)

Equation (17) means that the population of the vortices
as the function of energy of the point vortices is pro-
portional to exp(∓β(r)�
). This indicates that the local
temperature at the position where the value of the stream
function is evaluated can be determined by using the pop-
ulation as the function of each point vortex 
 = ψi.
We call N±(E)/

∫
D(E)

dr normalized population. As direct
observation of the area

∫
D(E)

dr is difficult, we replace
it with the contour length of the vortex distribution.
Normalized populations (histogram) as a function of ψi
(a) at positive and (b) at negative temperatures are plotted
in Figure 3.
At first we focus on the population of the positive vor-

tices in negative temperature indicated by the black line
in Figure 3(b). The population at ψi < 0 is very small
and there may be no apparent physical meanings. As ψi
increases, the population gradually decreases at 0 ≤ ψi ≤
20. This population indicates that the temperature of the
background vortices outside the clump is locally positive,
which will be confirmed in Figure 4. In the energy range
20 < ψi < 30, the population increases linearly in log
scale and β is almost constant. Finally, in the energy range
30 < ψi, the slope is zero. As the vortices categorized
in this energy region have large energy, it enables the for-
mation of the clump with the same-sign vortices. This
plot corresponds to the population heading towards the
thermal equilibrium state. It may be expected that the
population of the positive vortices has a positive slope
of −β� > 0 in all the energy ranges when the sys-
tem reaches the thermal equilibrium state. Note that
the value of β may be a unique constant (system
parameter) at that time, although during the relaxation
the system consists of the many small regions with
different β .
The above discussion focuses on the positive vortices

with the black line. The same discussion is valid for
the negative vortices with the red line. Note that the
Boltzmann factor changes into exp(β�ψi) as the sign of
� changes into −�. Thus, the population of the negative
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(a) Positive

(b) Negative

Figure 3 Populations for the equilibrium distributions (a) at
positive and (b) at negative temperature are plotted as a
function of energy possessed by each point vortex ψi .

vortices decreases as the energy increases in the case of
negative temperature.
In Figure 3(a), the positive temperature case is shown.

For the positive vortices, the slope is expected to be pos-
itive as the temperature can be positive. However, the
population shows a symmetric profile around ψi = 0.
The reason is unclear and further investigation is
needed.
To confirm the origin of the peaks located at the both

ends in Figure 3(b), the population is recalculated sepa-
rately for the point vortices inside and outside the clumps.
The result is shown in Figure 4.
The black line indicates the population of the vortices

inside the clumps, and the red line outside the clumps.
This shows the high energy vortices really locate inside the
clumps.
Figure 5 shows the vortex distribution categorized by

eight groups of the energy ranges in Figure 4.

Figure 4 Populations for the negative temperature distribution
are plotted separately inside and outside the clumps. Black and
red lines correspond to the inside and outside the clumps,
respectively.

In Figure 5, specifying a value of ψi equals selecting
an area of certain color. As the isosurface of the stream
function coincides with the boundary of the areas with
different vorticity (different color). Namely, the figure
implies that the vorticity ω is a function of the stream
function ψ , ω = ω(ψ) or equivalently ∇ · (uω) = 0. If the
evolution equation is given by the inviscid Euler equation,
the equation is reduced to

∂ω

∂t
= 0 (18)

and the distribution given in Figure 5 would be an equi-
librium one. However, the kinetic theory for the 2D point
vortex system anticipates the presence of the viscous
effect of the order 1/N due to the discrete distribution
of the vortices [1,3]. According to this prospect, there
remains a small but finite collisional effect, even if the
convective term ∇ · (uω) equals zero. This may be a driv-
ing source of the slow relaxation following the violent
relaxation. The boundaries of the vortices with different
temperatures are parallel to the isosurface of the stream
function. As the flow (particle motion) across the isosur-
face of the stream function is very restricted, the subsys-
tems with different temperature are preserved during the
slow evolution and the system barely reaches the global
thermal equilibrium state. This may be a reason for the
slow relaxation.
We assume the typical temperature of this system is

characterized by the regions (1) and (6) in Figure 4. The
slopes in energy regions (1) and (6) are observed with
various N keeping total circulation N� constant. The
result is shown in Figure 6. The values of the slopes are
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Figure 5 Vortex distribution is color-coded by the eight energy ranges indicated in Figure 4.

almost constant with different N. We conclude the slope
corresponds to the system temperature.

5 Conclusion
Mechanism of the violent and slow relaxations is demon-
strated by GPU numerical simulations. When temper-
ature is negative, distribution evolves rapidly and two
clumps consisting of positive and negative vortices exclu-
sively is formed by the violent relaxation. After this
relaxation, the system reaches the distribution with

Figure 6 The slopes in energy regions (1) and (6) in Figure 3 are
observed with various N keeping total circulation N� constant,
which may correspond to the system temperature.

∇ · (uω) = 0 and then evolves slowly driven by the col-
lisional effect which is anticipated by the kinetic theories
for the 2D point vortex system. The effect is of the order
of 1/N that results in the slow relaxation.
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