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A tridiagonal matrix construction by the
quotient difference recursion formula in the
case of multiple eigenvalues
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Abstract

In this paper, we grasp an inverse eigenvalue problem which constructs a tridiagonal matrix with specified multiple
eigenvalues, from the viewpoint of the quotient difference (qd) recursion formula. We also prove that the
characteristic and the minimal polynomials of a constructed tridiagonal matrix are equal to each other. As an
application of the qd formula, we present a procedure for getting a tridiagonal matrix with specified multiple
eigenvalues. Examples are given through providing with four tridiagonal matrices with specified multiple eigenvalues.
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1 Introduction
One of the important problems in linear algebra is to
construct matrices with specified eigenvalues. This is an
inverse eigenvalue problem which is classified in Struc-
tured Inverse Eigenvalue Problem (SIEP) called in [1].
The main purpose of this paper is to design a procedure
for solving an SIEP in the case where the constructed
matrix has tridiagonal form with multiple eigenvalues,
through reconsidering the quotient difference (qd) for-
mula. It is known that the qd formula has the applications
to computing a continued fraction expansion of power
series [5], zeros of polynomial [3], eigenvalues of a so-
called Jacobi matrix [9] and so on. Though the book [9]
refers to an aspect similar to in the following sections,
it gives only an anticipated comment without proof in
the case of multiple eigenvalues. There is no observa-
tion about numerical examples for verifying it. The key
point for the purpose is to investigate the Hankel deter-
minants appearing in the determinant solution to the qd
formula with the help of the Jordan canonical form. In
this paper, we give our focus on the unsettled case in
order to design a procedure for constructing a tridiagonal
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matrix with specified multiple eigenvalues, based on the
qd formula. The reason why the sequence of discussions
was stopped is expected that multiple-precision arith-
metic and symbolic computing around the published year
of Rutishauser’s works for the qd formula were not suf-
ficiently developed. The qd formula, strictly speaking the
differential form of it, for computing tridiagonal eigenval-
ues acts with high relative accuracy in single-precision or
double-precision arithmetic [7], while, actually, that serv-
ing for constructing a tridiagonal matrix gives rise to no
small errors. Thus, the qd formula serving for construct-
ing a tridiagonal matrix is not so worth in single-precision
or double-precision arithmetic. In recent computers, it is
not difficult to employ not only single or double preci-
sion arithmetic but also arbitrary-precision arithmetic or
symbolic computing. In fact, an expression involving only
symbolic quantities achieves exact arithmetic on the sci-
entific computing software such as Wolfram Mathemat-
ica,Maple and so on. Numerical errors frequently occur in
finite-precision arithmetic, so that a constructed tridiag-
onal matrix probably does not have multiple eigenvalues
without symbolic computing. The resulting procedure
in this paper is assumed to be carried out on symbolic
computing.
This paper is organized as follows. In Section 2, we

first give a short explanation of some already obtained

© 2014 Akaiwa et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

mailto:akaiwa.kanae.83w@st.kyoto-u.ac.jp
http://creativecommons.org/licenses/by/2.0


Akaiwa et al. Pacific Journal of Mathematics for Industry 2014, 6:10 Page 2 of 9
http://www.pacific-mathforindustry.com/content/6/1/10

properties concerning the qd formula. In Section 3, we
observe a tridiagonal matrix whose characteristic poly-
nomial is associated with the minimal polynomial of a
general matrix through reconsidering the qd formula.
The tridiagonal matrix essentially differs from the Jacobi
matrix in that it is not always symmetrized. We also
discuss the characteristic and the minimal polynomi-
als of a tridiagonal matrix in Section 4. In Section 5,
we design a procedure for constructing a tridiagonal
matrix with specified multiple eigenvalues, and then
demonstrate four tridiagonal matrices as examples of
the resulting procedure. Finally, in Section 6, we give
conclusion.

2 Some properties for the qd recursion formula
In this section, we briefly review two theorems in [4]
concerning the qd formula from the viewpoint of a gener-
ating function, the Hankel determinant and a tridiagonal
matrix.
Let us introduce theHankel determinantsH(n)

1 ,H(n)
2 , . . .

given in terms of a complex sequence { fn}∞0 as

H(n)
s =

∣∣∣∣∣∣∣∣∣

fn fn+1 · · · fn+s−1
fn+1 fn+2 · · · fn+s
...

...
. . .

...
fn+s−1 fn+s · · · fn+2s−2

∣∣∣∣∣∣∣∣∣
, (1)

s = 1, 2, . . . , n = 0, 1, . . . ,

where H(n)
−1 = 0 and H(n)

0 = 1 for n = 0, 1, . . . . Moreover,
let F(z) be a generating function associated with { fn}∞0 as

F(z) =
∞∑
n=0

fnzn = f0 + f1z + f2z2 + · · · . (2)

Let us consider that F(z) is a rational function with
respect to zwith a pole of order l0 ≥ 0 at infinity and finite
poles zk �= 0 of order lk for k = 1, 2, . . . , L. Then the sum
of the orders of the finite poles is l = l1 + l2 +· · ·+ lL, and
F(z) is factorized as

F(z) = G0(z) + G(z)
(z − z1)l1(z − z2)l2 · · · (z − zL)lL

, (3)

where G(z) is a polynomial of degree at most l, and G0(z)
is a polynomial of degree l0 if l0 > 0, orG0(z) = 0 if l0 = 0.
The following theorem gives the determinant solution to
the qd recursion formula

⎧⎨
⎩
q(n+1)
s + e(n+1)

s−1 = q(n)
s + e(n)

s ,
s = 1, 2, . . . , n = 0, 1, . . . ,

q(n+1)
s e(n+1)

s = q(n)
s+1e

(n)
s , s = 1, 2, . . . , n = 0, 1, . . . .

(4)

Theorem 1. ([4], pp. 596, 603, 610) Let F(z) be factor-
ized as in (3). Then it holds that

H(n)
s = 0, s = l + 1, l + 2, . . . , n = l0 + 1, l0 + 2, . . . .

(5)

Let us assume that

H(n)
s �= 0, s = 1, 2, . . . , l, n = 0, 1, . . . . (6)

Then the qd formula (4) with the initial settings

e(n)
0 = 0, q(n)

1 = fn+1
fn

, n = 0, 1, . . . (7)

admits the determinant solution

q(n)
s = H(n+1)

s H(n)
s−1

H(n)
s H(n+1)

s−1
, s = 1, 2, . . . , l, n = 0, 1, . . . ,

(8)

e(n)
s = H(n)

s+1H
(n+1)
s−1

H(n)
s H(n+1)

s
, s = 0, 1 . . . , l, n = 0, 1, . . . .

(9)

From (9) with (5), it follows that e(n)

l = 0 for n = 0, 1,
. . . . Moreover, it turns out that q(n)

s and e(n)
s for s = l + 1,

l + 2, . . . and n = 0, 1, . . . are not given in the same form
as (8) and (9).
Let us introduce s-by-s tridiagonal matrices,

T (n)
s =

⎛
⎜⎜⎜⎜⎜⎝

q(n)
1 q(n)

1 e(n)
1

1 q(n)
2 + e(n)

1
. . .

. . . . . . q(n)
s−1e

(n)
s−1

1 q(n)
s + e(n)

s−1

⎞
⎟⎟⎟⎟⎟⎠ , (10)

s = 1, 2, . . . , l, n = 0, 1, . . .

with the qd variables q(n)
s and e(n)

s . Let Is be the s-by-s
identity matrix. Then we obtain a theorem for the charac-
teristic polynomial of T (n)

l .

Theorem 2. ([4], pp. 626, 635) Let F(z) be factorized as
in (3). Let us assume that H(n)

s satisfies (6). For n = 0, 1, . . . ,
it holds that

det
(
zIl − T (n)

l

)
=

(
z − z−1

1

)l1 (
z − z−1

2

)l2 · · · (z − z−1
L

)lL
.

(11)

3 Tridiagonal matrix associated with general
matrix

In this section, from the viewpoint of the characteristic
and the minimal polynomials, we associate a general M-
by-M complex matrix A with a tridiagonal matrix T (n)

l .
Let λ1, λ2, . . . , λN be the distinct eigenvalues ofA, which

are numbered as |λ1| ≥ |λ2| ≥ · · · ≥ |λN |. It is noted that
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some of |λ1|, |λ2|, . . . , |λN | may equal to each other in the
case where some of λ1, λ2, . . . , λN are negative eigenvalues
or complex eigenvalues. LetMk be the algebraic multiplic-
ity of λk , whereM = M1+M2+· · ·+MN . For the identity
matrix IM ∈ R

M×M, let φA(z) = det(zIM − A) be the
characteristic polynomial of A, namely,

φA(z) = (z − λ1)
M1(z − λ2)

M2 · · · (z − λN )MN . (12)

Let us prepare the sequence { fn}∞0 given by

fn = wHAnu, n = 0, 1, . . . (13)

for some nonzero M-dimensional complex vectors u and
w, where the superscript H denotes the Hermitian trans-
pose. Originally, f0, f1, . . . were called the Schwarz con-
stants, but they are usually today called the moments
or the Markov parameters [2]. Since the matrix power
series

∑∞
n=0(zA)n is a Neumann series (cf. [6]), F(z) =∑∞

n=0 wH(zA)nu converges absolutely in the diskD : |z| <

|λ1|−1. Moreover, we derive F(z) = wH (IM − zA)−1 u
which implies that F(z) is a rational function with the
denominator det(IM − zA) = zMφA(z−1) as follows.

F(z) = G̃(z)
(1 − λ1z)M1(1 − λ2z)M2 · · · (1 − λNz)MN

,

(14)

where G̃(z) is some polynomial with respect to z. It
is remarkable that the numerator G̃(z) may have the
same factors as the denominator (1 − λ1z)M1(1 −
λ2z)M2 · · · (1−λNz)MN . In other words, F(z) has the poles
λ−1
1 , λ−1

2 , . . . , λ−1
N whose orders are equal to or less than

M1,M2, . . . ,MN , respectively.
Let us introduce the Jordan canonical form of A in order

to investigate the poles of F(z) with (13) even in the case
where A has multiple eigenvalues. Let Mk be the geo-
metric multiplicity of λk which indicates the dimension of
eigenspace Ker(A − λkIM). It is noted that Mk is equal
to or less than the algebraic multiplicity Mk . The matrix
A hasMk eigenvectors corresponding to λk , and then the
eigenvectors, denoted by vk,1, vk,2, . . . , vk,Mk , satisfy

Avk,j = λkvk,j, j = 1, 2, . . . ,Mk . (15)

Hereinafter, for j = 1, 2, . . . ,Mk , let vk,j(1) = vk,j. More-
over, for j = 1, 2, . . . ,Mk , let vk,j(2), vk,j(3), . . . , vk,j(mk,j)
denote the generalized eigenvectors associated with the
eigenvectors vk,j(1), where mk,j is the maximal integer
such that vk,j(1), vk,j(2), . . . , vk,j(mk,j) are linearly indepen-
dent. Of course, mk,1 + mk,2 + · · · + mk,Mk = Mk . Then,
the generalized eigenvectors vk,j(2), vk,j(3), . . . , vk,j(mk,j)
satisfy

Avk,j(i) = λkvk,j(i) + vk,j(i − 1),
i = 2, 3, . . . ,mk,j, j = 1, 2, . . . ,Mk . (16)

From (15) and (16), we derive the Jordan canonical form
of A as

V−1AV = J (17)

with the nonsingular matrix

V = (V1 V2 · · · VN ) ∈ C
M×M, (18)

and the block diagonal matrix

J = diag(J1, J2, . . . , JN ) ∈ C
M×M , (19)

where

Vk = (Vk,1 Vk,2 · · · Vk,Mk ) ∈ C
M×Mk , (20)

Vk,j = (vk,j(1) vk,j(2) · · · vk,j(mk,j)) ∈ C
M×mk,j , (21)

Jk = diag(Jk,1, Jk,2, . . . , Jk,Mk ) ∈ C
Mk×Mk , (22)

Jk,j =

⎛
⎜⎜⎜⎜⎝

λk 1

λk
. . .
. . . 1

λk

⎞
⎟⎟⎟⎟⎠ ∈ C

mk,j×mk,j . (23)

Without loss of generality, we may assume that mk,1 ≥
mk,2 ≥ · · · ≥ mk,Mk .
Let mk = max{mk,1,mk,2, . . . ,mk,Mk }. Since mk,1 ≥

mk,2 ≥ · · · ≥ mk,Mk , it is obvious that mk = mk,1. With
the help of the Jordan canonical form of A as in (17), we
get a proposition for the sequence { fn}∞0 in (13).

Proposition 1. Let u be the vector given by the linear
combination of the eigenvectors and the generalized eigen-
vectors of A, namely, for some constants κk,j,i,

u =
N∑
k=1

Mk∑
j=1

mk,j∑
i=1

κk,j,ivk,j(i). (24)

Moreover, for a vector w, let

ck,i =
Mk∑
j=1

mk,j∑
i′=i

κk,j,i′vHk,j(i
′ − i + 1)w. (25)

Then, the sequence {fn}∞0 in (13) can be expressed by

fn =
N∑
k=1

mk∑
i=1

(
n

i − 1

)
ck,iλn−i+1

k , (26)

where the binomial coefficients are 0 if n < i − 1. Also, for
suitable u and w, it holds that

ck,i �= 0, i = 1, 2, . . . ,mk , k = 1, 2, . . . ,N . (27)
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Proof. From V−1AV = J in (17), it holds that An =
VJnV−1. By combining it with (13) and (24), we derive

fn = wHVJnV−1u

=
N∑
k=1

Mk∑
j=1

mk,j∑
i=1

κk,j,iwHVJnV−1vk,j(i). (28)

Let ρk,j,i be the column number in which vk,j(i) arranges.
Then it is obvious that V−1vk,j(i) = ek,j(i) where ek,j(i)
denotes a unit vector such that the ρk,j,ith entry is 1 and
the others are 0. Thus, it follows that

fn =
N∑
k=1

Mk∑
j=1

mk,j∑
i=1

κk,j,iwHVJnek,j(i). (29)

Since J is the block diagonal matrix, the matrix Jn and
its small blocks (Jk)n are also so. It also turns out that
(Jk,j)n is upper triangle. So, it is worth noting that Jnek,j(i)
becomes the ρk,j,ith column vector of Jn and the zero-
entries arrange in except for its ρk,j,1th, ρk,j,2th, . . . , ρk,j,ith
rows. The Jordan blocks Jk,j can be decomposed as

Jk,j = λkImk,j + Emk,j , (30)

Emk,j =

⎛
⎜⎜⎜⎜⎝

0 1

0
. . .
. . . 1

0

⎞
⎟⎟⎟⎟⎠ ∈ R

mk,j×mk,j . (31)

It is emphasized that Emk,j is a nilpotent matrix whose i′th
power becomes the zero-matrix O for i′ ≥ mk,j. Thus,
(Jk,j)n can be expressed as

(Jk,j)n =
mk,j∑
i′=1

(
n

i′ − 1

)
λn−i′+1
k (Emk,j)

i′−1, (32)

where (Emk,j)
0 = Imk,j . Let us introduce an mk,j-

dimensional unit vector e(i) which is regarded as a part
of ek,j(i). Then, by taking account that (Emk,j)

i′−1e(i) =
e(i − i′ + 1) in (32), we derive

Jnek,j(i) =
i∑

i′=1

(
n

i′ − 1

)
λn−i′+1
k ek,j(i − i′ + 1). (33)

Since it holds that Vek,j(i − i′ + 1) = vk,j(i − i′ + 1), by
combining it with (29) and (33), we therefore have

fn =
N∑
k=1

Mk∑
j=1

mk,j∑
i=1

i∑
i′=1

κk,j,iwHvk,j(i − i′ + 1)

×
(

n
i′ − 1

)
λn−i′+1
k . (34)

By writing down two summations, we get

fn =
N∑
k=1

Mk∑
j=1

[
κk,j,1wHvk,j(1)

(
n
0

)
λnk

+ κk,j,2

(
wHvk,j(2)

(
n
0

)
λnk + wHvk,j(1)

(
n
1

)
λn−1
k

)

+ κk,j,3

(
wHvk,j(3)

(
n
0

)
λnk + wHvk,j(2)

(
n
1

)
λn−1
k

+wHvk,j(1)
(
n
2

)
λn−2
k

)
+ · · ·
+ κk,j,mk,j

(
wHvk,j(mk,j)

(
n
0

)
λnk

+ wHvk,j(mk,j − 1)
(
n
1

)
λn−1
k

+ · · · + wHvk,j(1)
(

n
mk,j − 1

)
λ
n−mk,j+1
k

)]
.

Moreover, by paying our attention to the binomial coeffi-
cients, we can rewrite fn as

fn =
N∑
k=1

⎡
⎣(

n
0

)
λnk

Mk∑
j=1

(
κk,j,1wHvk,j(1) + κk,j,2wHvk,j(2)

+ · · · + κk,j,mk,jw
Hvk,j(mk,j)

)

+
(
n
1

)
λn−1
k

Mk∑
j=1

(
κk,j,2wHvk(j, 1) + κk,j,3wHvk(j, 2)

+ · · · + κk,j,mk,jw
Hvk,j(mk,j − 1)

)
+ · · ·

+
(

n
mk,j − 1

)
λ
n−mk,j+1
k

Mk∑
j=1

κk,j,mk,jw
Hvk,j(1)

⎤
⎦

=
N∑
k=1

⎡
⎣(

n
0

)
λnk

Mk∑
j=1

mk,j∑
i=1

κk,j,iwHvk,j(i − 1 + 1)

+
(
n
1

)
λn−1
k

Mk∑
j=1

mk,j∑
i=2

κk,j,iwHvk,j(i − 2 + 1)

+ · · ·
+

(
n

mk,j − 1

)
λ
n−mk,j+1
k

×
Mk∑
j=1

mk,j∑
i=mk,j

κk,j,iwHvk,j(i − mk,j + 1)

⎤
⎦ .
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Frommk ≥ mk,j and wHvk,j(i − i′ + 1) = vHk,j(i − i′ + 1)w,
it follows that

fn =
N∑
k=1

mk∑
i′=1

⎛
⎝Mk∑

j=1

mk,j∑
i=i′

κk,j,ivHk,j(i − i′ + 1)w

⎞
⎠

×
(

n
i′ − 1

)
λn−i′+1
k . (35)

The exchange of i for i′ in (35) brings us to (25) and (26).
For example, let us consider the case where the con-

stants κk,j,i are all 1. Then u becomes the sum of all the
eigenvectors and generalized eigenvectors. Moreover, let
w = V−Hα in (25) where α is an M-dimensional vector
with all the entries 1. Then it holds that κk,j,ivHk,j(i

′ − i +
1)w = e�

k,j(i
′ − i + 1)α = 1. Thus, it is concluded that

ck,i �= 0. The above discussion suggests that there exists at
least a pair of u and w for satisfying (27).

Proposition 1 leads to a theorem concerning the gener-
ating function F(z) with the moments fn = wHAnu.

Theorem 3. Let F(z) be the generating function with the
moments fn = wHAnu. Then, F(z) converges absolutely in
the disk D : |z| < |λ1|−1, and F(z) is expressed as

F(z) =
N∑
k=1

mk∑
i=1

ck,izi−1

(1 − λkz)i
. (36)

Especially, if λN = 0, then F(z) is expressed as

F(z) =cN ,1 + cN ,2z + · · · + cN ,mN zmN−1

+
N−1∑
k=1

mk∑
i=1

ck,izi−1

(1 − λkz)i
. (37)

Let us assume that (27) holds for suitable u and w. If
λN �= 0, then F(z) has the finite poles λ−1

1 , λ−1
2 , . . . , λ−1

N of
the orders m1,m2, . . . ,mN, respectively, and the sum of the
orders is m = m1+m2+· · ·+mN. If λN = 0, then F(z) has
the pole of the order mN − 1 at infinity and the finite poles
λ−1
1 , λ−1

2 , . . . , λ−1
N−1 of the orders m1,m2, . . . ,mN, respec-

tively, and the sum of the orders of all the finite poles is
m − mN.

Proof. By substituting fn in (26) into F(z) in (2), we get

F(z) =
N∑
k=1

mk∑
i=1

ck,i

( ∞∑
n=0

zn
(

n
i − 1

)
λn−i+1
k

)

=
N∑
k=1

mk∑
i=1

ck,i

( ∞∑
n=i−1

zn
(

n
i − 1

)
λn−i+1
k

)
. (38)

By letting n = n′ + i − 1, we derive

F(z) =
N∑
k=1

mk∑
i=1

ck,izi−1
( ∞∑
n′=0

(
n′ + i − 1

i − 1

)
(λkz)n

′
)
.

(39)

It is noted that, for |z| < 1,

∞∑
n′=0

(
n′ + i − 1

i − 1

)
zn

′ = 1
(1 − z)i

. (40)

From (39) and (40), it turns out that F(z) converges abso-
lutely in the diskD : |z| < |λ1|−1. Simultaneously, we have
(36) for z ∈ D. It is obvious that (36) with λN = 0 becomes
(37).Moreover, (36) and (37) immediately lead to the latter
half concerning the poles of F(z).

Let ψA(z) be the polynomial whose degree is the small-
est such that ψA(A) = O. Here ψA(z) is called the
minimal polynomial of A. Let us recall here that the max-
imal dimension of the Jordan blocks Jk,1, Jk,2, . . . , Jk,Mk
corresponding to λk ismk . So, ψA(z) is representable as

ψA(z) = (z − λ1)
m1(z − λ2)

m2 · · · (z − λN )mN . (41)

Therefore, we have the main theorem in this section for
the relationship between the minimal polynomial of a
general matrix A and the characteristic polynomial of a
tridiagonal matrix T (n)

l .

Theorem 4. Let F(z) be given by the generating function
with the moments fn = wHAnu. Let us assume that (6) and
(27) hold for suitable u and w. If λ1 �= 0, λ2 �= 0, . . . , λN �=
0, then it holds that

det
(
zIm − T (n)

m

)
= ψA(z), n = 0, 1, . . . , (42)

otherwise,

det
(
zIm−mN − T (n)

m−mN

)
= ψA(z)

zmN
, n = 0, 1, . . . .

(43)

Proof. It is remarkable that three integers L, l, lk and a
complex zk associated with the tridiagonal matrix T (n)

l in
Theorem 2 are given in terms of three integers N ,m,mk
and a complex λk associated with a general matrix A. If
λN �= 0, then it follows from the latter half of Theorem 3
that L = N , l = m, l0, l1 = m1, l2 = m2, . . . , lN = mN and
zk = λ−1

k . So, from (11) and (41), we derive (42). Similarly,
if λN = 0, then L = N − 1, l = m−mN , l0 = mN − 1, l1 =
m1, l2 = m2, . . . , lN−1 = mN−1 and zk = λ−1

k . Thus (11)
and (41) lead to (43).
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Incidentally, the editors in ([9], pp. 444–445) give a
simple example with short comments concerning themin-
imal polynomial, the Jordan canonical form of A and the
multiple poles of F(z).

4 Minimal polynomial of tridiagonal matrix
In this section, with the help of the Jordan canonical form,
we clarify the relationship of the characteristic polynomial
of the tridiagonal matrix T (n)

l to the minimal one.
For simplicity, let us here adopt the following abbrevia-

tions for matrices T (n)
s ,

Ts =

⎛
⎜⎜⎜⎜⎝

u1 v1

1 u2
. . .

. . . . . . vs−1
1 us

⎞
⎟⎟⎟⎟⎠ , s = 0, 1, . . . , l, (44)

where l = m if λN �= 0 or l = m − mN if λN = 0. Let
p0(z) = 1 and ps(z) = det(zIs−Ts) for s = 1, 2, . . . , l. Then
pl(z) is just the characteristic polynomial of Tl, namely,

φT (z) = (z − λ1)
m1(z − λ2)

m2 · · · (z − λL)
mL , (45)

where L = N if λN �= 0 or L = N − 1 if λN = 0. The
following proposition gives the Jordan canonical form of
the tridiagonal matrix Tl.

Proposition 2. There exists a nonsingularmatrix P such
that

P−1(Tl)
�P = Ĵ , (46)

Ĵ = diag(J1,1, J2,1, . . . , JL,1) ∈ C
l×l, (47)

where J1,1, J2,1, . . . , JL,1 are of the same form as (23).

Proof. The characteristic polynomials p0(z), p1(z), . . . ,
pl(z) satisfy⎧⎨

⎩
zp0(z) = u1p0(z) + p1(z),
zps(z) = vsps−1(z) + us+1ps(z) + ps+1(z),

s = 1, 2, . . . , l − 1.
(48)

This is easily derived from the expansion of det(zIs − Ts)
by the sth row minors. By taking the 0th, the 1st, . . . , the
(mk − 1)th derivatives with respect to z in (48), we get⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

zDip0(z) + iDi−1p0(z) = u1Dip0(z) + Dip1(z),
i = 0, 1, . . . ,mk − 1,

zDips(z) + iDi−1ps(z)
= vsDips−1(z) + us+1Dips(z) + Dips+1(z),

i = 0, 1, . . . ,mk − 1, s = 1, 2, . . . , l − 1,
(49)

where Dips(z) denotes the ith derivative of ps(z)
with respect to z. Let pk,i = (Dip0(λk),Dip1(λk),
. . . ,Dipl−1(λk))

� ∈ C
l. Then, by substituting z = λk

in (49) and by taking account that Dipl(λk) = Di(z −
λ1)m1(z − λ2)m2 · · · (z − λl)

ml |z=λk = 0 for i = 0, 1, . . . ,
mk − 1, we obtain

λkpk,i + ipk,i−1 = (Tl)
�pk,i, i = 0, 1, . . . ,mk − 1.

(50)

Moreover, it follows that
⎧⎨
⎩

(Tl)
�Pk,0 = λkPk,0,

(Tl)
�Pk,i = λkPk,i + Pk,i−1,
i = 1, 2, . . . ,mk − 1,

(51)

where Pk,i = (1/i! )pk,i. Thus, by letting P = (P1,0 P1,1 · · ·
P1,m1−1 |P2,0 P2,1 · · · P2,m2−1 | · · · |PL,0 PL,1 · · · PL,mL−1) ∈
C
l×l, we have (Tl)

�P = PĴ .
Here, it remains to prove that P is nonsingular. Of

course, Pk,i �= O since the (i + 1)th row of Pk,i is
Dipi(λk)/i!= 1. Let Wk,i = Ker

(
(Tl)

� − λkIl
)i for i =

1, 2, . . .mk −1, which indicates the generalized eigenspace
of (Tl)

� corresponding to λk . Then it is obvious from (51)
that

(
(Tl)

� − λkIl
)
Pk,0 = O and Pk,0 ∈ Wk,1. Eq. (51) with

i = 1 also leads to that
(
(Tl)

� − λkIl
)2 Pk,1 = O and Pk,1 ∈

Wk,2. Simultaneously, it is observed that Pk,1 /∈ Wk,1. Let
us assume that Pk,1 ∈ Wk,1, namely, (Tl)

�Pk,1 = λkPk,1.
Then, from (51), we derive Pk,0 = O, which contradicts
with Pk,0 �= O. Thus, it follows that Pk,1 /∈ Wk,1. Similarly,
by induction for i = 2, 3, . . . ,mk − 1 in Pk,i, we have

Pk,i /∈ Wk,1,Wk,2, . . . ,Wk,i, Pk,i ∈ Wk,i+1,
i = 1, 2, . . . ,mk − 1. (52)

From (52), it turns out that Pk,i for i = 0, 1, . . . ,mk −1 and
k = 1, 2, . . . , L are linearly independent. Therefore, it is
concluded that P is nonsingular and the Jordan canonical
form of (Tl)

� is given by (46).

Proposition 2 suggests that the minimal polynomial of
(Tl)

� becomes

ψT (z) = (z − λ1)
m1(z − λ2)

m2 · · · (z − λL)
mL , (53)

which is equal to the characteristic polynomial of Tl in
(45). If m1 = m2 = · · · = mL = 1, then it is obvious that
Tl is diagonalizable. Otherwise, Tl is not diagonalizable.
This is because multiplicity of roots in minimal polyno-
mial coincides with maximal size of the Jordan blocks.
To sum up, we have a theorem for the properties of the
tridiagonal matrix Tl.

Theorem 5. The minimal polynomial of Tl is equal to
the characteristic one. Also, Tl is diagonalizable tridiago-
nal matrix if and only if it has no multiple eigenvalues.
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5 Procedure for constructing tridiagonal matrix
and its examples

In this section, based on the discussions in the previ-
ous sections, we first design a procedure for constructing
a tridiagonal matrix with specified multiple eigenvalues.
We next give four kinds of examples for demonstrating
that the resulting procedure can provide with tridiagonal
matrices with multiple eigenvalues. Examples have been
carried out with our computer with OS: Mac OS X 10.8.5,
CPU: Intel Core i7 2 GHz, RAM: 8 GB. We also use the
scientific computing software Wolfram Mathematica 9.0.
In every example, all the entries of u are simply set to 1 and
those of w are not artificial. The readers will realize that
the settings of u andw are not so difficult for satisfying (6)
and (27).
Let us here consider the relationship of five theorems in

the previous sections. Theorem 2 shows that the eigen-
values of T (n)

l in the tridiagonal form as (10) are equal to
the poles of the generating function F(z) and the multi-
plicity of the eigenvalues coincide with the those of the
poles of F(z). Theorems 3 and 4 claim that the mini-
mal polynomial of a general matrix A, denoted by ψA(z)
is just the denominator of F(z) involving fn = wHAnu,
and it coincides with the characteristic polynomial of
T (n)

l denoted by φT (z), except for the factor correspond-
ing to zero-eigenvalues. With the help of Theorem 1, we
thus realize that the nonzero eigenvalues of T (0)

l with the
entries involving q(0)

1 , q(0)
2 , . . . , q(0)

l and e(0)1 , e(0)2 , . . . , e(0)l−1
become roots of the minimal polynomialψA(z) in the case
where q(0)

1 , q(0)
2 , . . . , q(0)

l and e(0)1 , e(0)2 , . . . , e(0)l−1 are given by
the qd formula (4) under the initial settings e(n)

0 = 0 and
q(n)
1 = fn+1/fn with fn = wHAnu. See also Figure 1 for

the diagram for getting q(n)
s and e(n)

s by the qd formula
(4). A procedure for constructing T = T (0)

l with the same
nonzero eigenvalues as A is therefore as follows.

1: Set l = m if λN �= 0 or l = m − mN if λN = 0.
2: Choose u and w as in (6) and (27).
3: Compute fn = wHAnu for n = 0, 1, . . . , 2l − 1.
4: Set e(n)

0 = 0 for n = 0, 1, . . . , 2l − 3.
5: Compute q(n)

1 = fn+1/fn for n = 0, 1, . . . , 2l − 2.
6: Repeat (a) and (b) for s = 2, 3, . . . , l.

(a) Compute e(n)
s−1 = q(n+1)

s−1 + e(n+1)
s−2 − q(n)

s−1 for
n = 0, 1, . . . , 2l − 2s + 1.

(b) Compute q(n)
s = q(n+1)

s−1 e(n+1)
s−1 /e(n)

s−1 for
n = 0, 1, . . . , 2l − 2s.

7: Construct a tridiagonal matrix by arranging
q(0)
1 , q(0)

2 , . . . , q(0)
l and e(0)1 , e(0)2 , . . . , e(0)l−1.

According to Theorem 5, the minimal and the character-
istic polynomials of the resulting tridiagonal matrix T are
equal to each other. Moreover, T is diagonalizable if and
only if it has no multiple eigenvalues.
It is necessary to control the eigenvalues of A for getting

T as a tridiagonal matrix with specified eigenvalues. It is
easy to specify the eigenvalues of the diagonal matrix and
those of the Jordan matrix.
First, in the procedure, let us consider the case where

A = diag(2, 2, 2, 1, 1, 1) ∈ R
6×6

which is a diagonal matrix with two eigenvalues 1 and 2
each of multiplicity 3. Obviously, the characteristic and
the minimal polynomials are factorized as (z−1)3(z−2)3
and (z−1)(z−2), respectively. So, the integers l andm are
immediately determined as l = 2 and m = 6. Moreover,

Figure 1 The qd diagram for a tridiagonal matrix construction.
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by letting u = (1, 1, 1, 1, 1, 1)� and w = (1, 1, 1, 1, 1, 1)�,
we derive a tridiagonal matrix as

T =
(

3
2

1
4

1 3
2

)
∈ R

2×2

whose characteristic and minimal polynomials are both
factorized as (z − 1)(z − 2). The tridiagonal matrix T
is a diagonalizable matrix with the distinct eigenvalues 1
and 2.
Next, let us adopt a bidiagonal matrix, which can be

regarded as the Jordan matrix, with eigenvalues 2 of mul-
tiplicity 6 as A, namely,

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 1
2 1
2 1
2 1
2 1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R
6×6,

in the procedure. Since the characteristic polynomial of
A is equal to the minimal one, the integers l and m are
determined as l = m = 6. Then the procedure with
u = (1, 1, 1, 1, 1, 1)� and w = (1, 1, 0, 1, 0, 1)� constructs
a tridiagonal matrix, which can not be symmetrized,

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11
4

3
16

1 11
12 − 4

9
1 10

3 3

1 0 −8

1 29
8 − 1

64
1 11

8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
6×6.

The characteristic and the minimal polynomials of A and
T are all the same polynomial with respect to z, which is
factored as (z − 2)6. So, the tridiagonal matrix T is not
diagonalizable.
Let us prepare the Jordan matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 1
3 1
3
3 1
3
3
2 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
8×8.

The matrix A has multiple eigenvalues such as λ1 = 3,
λ2 = 3, λ3 = 3, λ4 = 3, λ5 = 3, λ6 = 3, λ7 = 2,
λ8 = 2. It is noted that |λ1| = |λ2| = |λ3| = |λ4| = |λ5| =
|λ6| > |λ7| = |λ8| > 0. The characteristic and the mini-
mal polynomials of A are factorized as (z−2)2(z−3)6 and
(z − 2)2(z − 3)3, respectively. So, let l = 5 and m = 8 in
the procedure. Then, the settings u = (1, 1, 1, 1, 1, 1, 1, 1)�

and w = (1, 1, 1, 1, 1, 1, 1, 1)� bring us to a tridiagonal
matrix, which can not be symmetrized,

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

13
4

1
16

1 17
4 − 13

2
1 − 11

26
116
169

1 1232
377 − 13

841
1 77

29

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R
5×5

whose characteristic and minimal polynomials are both
factorized as (z − 2)2(z − 3)3, which is just equal to the
minimal one of A. The tridiagonal matrix T is not a diag-
onalizable matrix with eigenvalues 2 and 3 of multiplicity
2 and 3, respectively.
Finally, let usA be set as the Jordanmatrix with complex

eigenvalues 2+i and 2−i each ofmultiplicity 2 and distinct
real eigenvalues 1 and 2, namely,

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 + i 1
2 + i

2 − i 1
2 − i

2
1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ C
6×6,

in this procedure. By taking account that the characteris-
tic and the minimal polynomials of A are equal to each
other, let l = m = 6 in the procedure. Under the settings
u = (1, 1, 1, 1, 1, 1)� and w = (1, 1, 1, 1, 1, 1)�, the result-
ing matrix T is a real tridiagonal matrix, which can not be
symmetrized,

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

13
6 − 19

36
1 443

114 − 1920
361

1 − 363
760 − 209

1600
1 1187

440 − 240
121

1 37
66

11
36

1 13
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
6×6.

The characteristic and the minimal polynomials of A and
T are all the same polynomial with respect to z, which is
factorized as (z− 2+ i)2(z− 2− i)2(z− 2)(z− 1). So, the
tridiagonal matrix T is not a diagonalizable matrix with
the same complex multiple eigenvalues and real distinct
ones as A.

6 Conclusion
In this paper, we clarify that the qd recursion formula
is applicable to constructing a tridiagonal matrix with
specified multiple eigenvalues. We first investigate the
denominator of the generating function associated with
the sequence given from two suitable vectors and the pow-
ers of a general matrix A, through considering the Jordan
canonical form of A. Accordingly, it is observed that the
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minimal polynomial of A coincides with the characteristic
polynomial of a tridiagonal matrix T, denoted by φT (z),
or the polynomial zmLφT (z) for the multiplicity mL of the
zero-eigenvalues of A. Next, by taking account of the Jor-
dan canonical form of T, we show that the characteristic
and the minimal polynomials of T are equal to each other.
We finally present a procedure for constructing a tridiag-
onal matrix with specified multiple eigenvalues, and then
give four examples for the resulting procedure.
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