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Noncolliding system of continuous-time
randomwalks
Syota Esaki

Abstract

The continuous-time random walk is defined as a Poissonization of discrete-time random walk. We study the
noncolliding system of continuous-time simple and symmetric random walks on Z. We show that the system is
determinantal for any finite initial configuration without multiple point. The spatio-temporal correlation kernel is
expressed by using the modified Bessel functions. We extend the system to the noncolliding process with an infinite
number of particles, when the initial configuration has equidistant spacing of particles, and show a relaxation
phenomenon to the equilibrium determinantal point process with the sine kernel.

Keywords: Determinantal martingale representation, Determinantal process, Fundamental martingale polynomials,
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1 Introduction
Eigenvalue distributions of Hermitian random-matrix
ensembles provide typical examples of determinantal
point processes (DPPs) on R [5,19]. The essential charac-
teristic of a DPP is repulsive interaction acting between
any pair of points [25,26]. Recently, it is clarified that
such negatively correlated point processes are useful not
only to simulate energy-level statistics of complex quan-
tum many-particle systems, but also to describe statistics
of sets of items that are diverse; for example, queries of
users and topics in daily news. A variety of such real-world
applications of DPPs in the machine learning technologies
is surveyed in [17]. In particular, the eigenvalue distribu-
tion of non-Hermitian randommatrices called the Ginibre
ensemble [6] has attracted much attention both in pure
mathematics and in applications, since it gives a DPP on
a complex plane C. The Ginibre-Voronoi tessellation on
the plane has been studied [7] and its advantage than
the classical Poisson-Voronoi tessellation in the applica-
tions to cellular network modeling is reported [20]. See
[2] and papers cited therein for simulation algorithms of
DPPs.
DPPs originally considered on R have been also

extended to the spatio-temporal plane R×[0,∞). Such
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dynamical extensions of DPPs are called determinantal
processes [12,14,21-23]. Typical examples of determinan-
tal processes are noncolliding diffusions including Dyson’s
Brownian motion model with β = 2 [3], where noncollid-
ing conditions make the systems be negatively correlated.
The purpose of the present paper is to introduce a discrete
model defined on a lattice Z, which realizes a determi-
nantal process. Discretization of models will be useful in
applications in the future.
The continuous-time random walk is defined as a

Poissonization of discrete-time random walk. We con-
struct a noncolliding system of continuous-time simple
and symmetric random walks on Z as an h-transform dis-
cussed by König, O’Connell, and Roch [16]. We show that
the system has a determinantal martingale representation
[9]. We prove that for any finite initial configuration with-
out multiple point, ξ(·) = ∑N

j=1 δuj(·), u1 < u2 < · · · <

uN , uj ∈ Z, 1 ≤ j ≤ N ∈ N, the system is determinantal in
the sense that all spatio-temporal correlation functions are
given by determinants specified by the correlation kernel.
The correlation kernel is explicitly determined as

Kξ (s, x; t, y) =
N∑
j=1

I|x−uj|(s)I|y−uj|(−t)

+
N∑
j=1

∑
w∈Z\{uk}Nk=1

I|x−uj|(s)I|y−w|(−t)
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×
∏

1≤�≤N ,
� �=j

w − u�

uj − u�

− 1(s> t)I|x−y|(s − t), (1.1)

(s, x), (t, y) ∈[ 0,∞) × Z. Here Iν(z) is the modified Bessel
function of the first kind of order ν defined by [27]

Iν(z) :=
( z
2

)ν
∞∑

�=0

(z/2)2�

�!�(ν + � + 1)
, ν > −1, (1.2)

and 1(·) is an indicator; 1(ω) = 1 if ω is satisfied, and
1(ω) = 0 otherwise.
We extend the system to the noncolliding process with

an infinite number of particles, when the initial configu-
ration is given by

ξaZ(·) =
∑
k∈Z

δak(·), (1.3)

having equidistant spacing a ∈ {2, 3, . . .} between parti-
cles on Z. We prove that this infinite particle process is
also determinantal and the correlation kernel is given by

KξaZ(s, x; t, y)

=
∑
j∈Z

I|x−aj|(s)
1
2π

∫ π

−π

dλeiλ(y/a−j)+t cos(λ/a)

− 1(s > t)I|x−y|(s − t), (1.4)

(s, x), (t, y) ∈ [0,∞) × Z. Moreover, we show a relaxation
phenomenon to the equilibrium determinantal point pro-
cess, which is governed by the sine kernel defined on
Z [10].
The paper is organized as follows. In Section 2 we

introduce continuous-time random walk and associated
martingales. We construct the noncolliding random walk
using the h-transform in the sense of Doob in Section 3.
In Section 4 we introduce a transformation S and give the
determinantal martingale representation for the noncol-
liding random walk. In Section 5 we give the correlation
kernel of the noncolliding random walk explicitly and
extend the system to infinite particle processes.

2 Continuous-time randomwalk
2.1 Construction
Let Z be the set of all integers and η ∈ Z be a random
variable with a probability measure σ = (δ−1 + δ1)/2, that
is,

Prob[η = n]=

⎧⎪⎨⎪⎩
1
2
, n = ±1,

0, n ∈ Z \ {−1, 1}.
The characteristic function of σ is then given by

σ̂ (z) =
∫
R

eizησ (dη) = cos z, z ∈ C, i = √−1. (2.1)

We consider a continuous-time simple and symmetric
random walk on Z, which is denoted by V (t), t ∈ [0,∞).
It is defined as a compound Poisson process such that its
characteristic function ψV (t)(z) is given by [24],

ψV (t)(z) := E
[
eizV (t)

]
=

∞∑
j=0

e−t t j

j!
(̂σ (z)) j

= exp(t(̂σ (z) − 1)), z ∈ C. (2.2)

In other words, the present continuous-time random
walk is a Poissonization of discrete-time simple and sym-
metric random walk. In this paper, this process on Z is
simply denoted by RW.
By definition the generator of RW is given by

L1 f = f (x + 1) + f (x − 1) − 2 f (x)
2

for suitable functions f .

Lemma 2.1. For V (·), the transition probability is given by

p(t, y|x) = 1
2π

∫ π

−π

dkeik(y−x)e−(1−cos k)t ,

t ∈ [0,∞), x, y ∈ Z.
(2.3)

Proof. We consider the co-generator of L1, which is
denoted by L∗

1. We can see easily L1 = L∗
1. Therefore the

transition probability of RW is a unique solution of the
difference equation

d
dt

p(t, y|x) = 1
2
[
p(t, y − 1|x) + p(t, y + 1|x) − 2p(t, y|x)] ,

t ∈ [0,∞), x, y ∈ Z

with the initial condition p(0, y|x) = δx,y. Since the eigen-
function of L∗

1 is φk(x) = eikx with the eigenvalue λk =
cos k − 1, k ∈ R, the integral ( 2.3) solves the differential
equation. It is obvious that the initial condition is satisfied
by (2.3). Then the proof is completed.

Using the modified Bessel function (1.2) we can give
another representation to p.

Lemma 2.2. For t ∈ [0,∞), x, y ∈ Z,

p(t, y|x) = e−tI|y−x|(t). (2.4)
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Proof. By symmetry of the RHS of ( 2.3), p(t, y|x) =
p(t, x|y), and hence we can assume y ≥ x without loss of
generality. We see

p(t, y|x) = e−t 1
2π

∫ π

−π

dke−ik(y−x)
∞∑
n=0

tn

n!
(cos k)n

= e−t
∞∑
n=0

tn

n!
1
2π

∫ π

−π

dk
(
e−ik

)y−x
(
eik + e−ik

2

)n

.

(2.5)

We rewrite this integral by k into a contour integral by
z = eik along a unit circle. Then (2.5) is equal to

e−t
∞∑
n=0

tn

n!
1
2π

∮ dz
iz
zy−x 1

2n

(
z + 1

z

)n

= e−t
∞∑
n=0

tn

n!
1
2n

n∑
�=0

(
n
�

)
1
2π i

∮
dzzy−x−1+2�−n

= e−t
∞∑

�=0

∞∑
n=�

(
t
2

)n 1
�! (n − �)!

δn,y−x+2�

= e−t
(
t
2

)y−x ∞∑
�=0

(t/2)2�

�!�(y − x + � + 1)
= RHS of (2.4).

Thus the proof is completed.

2.2 Associated martingales
We introduce a filtration {Ft : t ∈ [0,∞)} for RW defined
by Ft = σ(V (s) : 0 ≤ s ≤ t).
We perform the Esscher transform with parameter α ∈

R, V (·) → Ṽα(·) as

Ṽα(t) = eαV (t)

E
[
eαV (t)] , t ∈ [0,∞).

By E
[
eαV (t)] = ψV (t)(iα) = exp{t(coshα − 1)}, we have

Ṽα(t) = Gα(t,V (t))

with

Gα(t, x) = exp{αx − t(coshα−1)} , t ∈ [0,∞), x ∈ Z.
(2.6)

Lemma 2.3. Gα(t,V (t)) is an Ft-martingale for any α ∈
R.

Proof. For s < t,

E[ Gα(t,V (t))|Fs] = E
[
eαV (t)∣∣Fs

]
E
[
eαV (t)]

= eαV (s)E
[
eα(V (t)−V (s))]

E
[
eαV (s)]E[eα(V (t)−V (s))]

= eαV (s)

E
[
eαV (s)] = Gα(s,V (s)).

Therefore, Gα(t,V (t)) is an Ft-martingale.

Expansion of (2.6) with respect to α around α = 0,

Gα(t, x) =
∞∑
n=0

mn(t, x)
αn

n!
, (2.7)

determines a series of polynomials of degree n,

mn(t, x) =
n∑

j=0
c(j)n (t)x j, n ∈ N0. (2.8)

For n = 0, 1, 2, 3, 4, they are given by

m0(t, x) = 1,
m1(t, x) = x,
m2(t, x) = x2 − t,
m3(t, x) = x3 − 3tx,
m4(t, x) = x4 − 6tx2 + 3t2 − t.

They satisfy relations

− d
dt

mn(t, x) = 1
2
[mn(t, x+1) − 2mn(t, x) + mn(t, x−1)] ,

n ∈ N0.

The polynomials {mn(t, x)}n∈N0 defined by (2.7) are fun-
damental martingale polynomials in the following sense
[9].

Lemma 2.4. The polynomials {mn(t, x)}n∈N0 are given in
the form (2.8), in which

c( j)n (0) = 0, 0 ≤ j ≤ n−1, c(n)
n (t) ≡ 1, for all n ∈ N0.

(2.9)

That is mn(t, x)’s are monic polynomials with mn(0, x) =
xn. Moreover, {mn(t,V (t))}n∈N0 are Ft-martingales, t ∈
[0,∞).

Proof. By straightforward calculationwe can check (2.9).
We can prove that {mn(t,V (t))}n∈N0 are Ft-martingales
from the fact that Gα(t, x) is an Ft-martingale for all α ∈
R.

3 Harmonic transform and noncolliding system
Suppose N ∈ N. We consider an N-dimensional RW on
ZN , V (t) = (V1(t), . . . ,VN (t)), t ∈ [0,∞), where Vj(·),
1 ≤ j ≤ N are independent copies ofV (·). We take the ini-
tial point u = (u1, . . . ,uN ) = V (0) ∈ ZN . The probability
space is denoted by (�,F , Pu). The expectation is written
as Eu. Let

WN = {
x = (x1, . . . , xN ) ∈ R

N : x1 < · · · < xN
}
,
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which is the Weyl chamber of type AN−1. Define τu be
the exit time from the Weyl chamber of the RW started at
u ∈ ZN ∩ WN ,

τu = inf{t ≥ 0 : V (t) /∈ WN } .

In the present paper, we study the RW conditioned to
stay in WN forever. That is, τu = ∞ is conditioned. We
call such a conditional RW the continuous-time (simple
and symmetric) noncolliding RW.
LetM be the space of nonnegative integer-valued Radon

measures on Z. We consider the noncolliding RW as a
process inM and represent it by

�(t, ·) =
N∑
j=1

δXj(t)(·), t ∈ [0,∞), (3.1)

where

X(t) = (X1(t), . . . ,XN (t)) ∈ Z
N ∩ WN , t ∈ [0,∞).

(3.2)

The configuration �(t, ·) ∈ M, t ∈ [0,∞) is unlabeled,
while X(t) ∈ ZN ∩ WN , t ∈ [0,∞) is labeled. We write the
probability measure for �(t, ·), t ∈ [0,∞) started at ξ ∈
M as Pξ with expectation Eξ , and introduce a filtration
{F(t) : t ∈ [0,∞)} defined by F(t) = σ(�(s) : 0 ≤ s ≤ t).
We setM0 = {ξ ∈ M; ξ({x}) ≤ 1 for any x ∈ Z}.
We write the Vandermonde determinant as

h(x) = det
1≤j,k≤N

[
xk−1
j

]
=

∏
1≤j<k≤N

(xk − xj). (3.3)

We would like to introduce the h-transform in the sense
of Doob for RW in WN . For this purpose Corollary 2.2
and Theorem 2.4 in [16] proved by König, O’Connell,
and Roch are useful. See also [4,10,15]. Here we rewrite
their theorems with modifications to fit the present situ-
ation and put the following proposition. Let WN be {x =
(x1, . . . , xN ) ∈ RN : x1 ≤ · · · ≤ xN } and ∂WN :=
WN \ WN .

Proposition 3.1. (Corollary 2.2 and Theorem 2.4 in [16])
The function h given by (3.3) is harmonic for V (t). The
restriction of h to WN is a strictly positive function. And h
vanishes at ∂WN .

By this proposition we can construct the noncolliding
RW, �, as an h-transform of an absorbing RW, V , inWN .

Lemma 3.2. Suppose that N ∈ N and ξ = ∑N
j=1 δuj with

u = (u1, . . . ,uN ) ∈ ZN ∩ WN . Let t ∈ [0,∞), t ≤ T < ∞.
For any F(t)-measurable bounded function F we have

Eξ [F(�(·))] = Eu

⎡⎣F
⎛⎝ N∑

j=1
δVj(·)

⎞⎠ 1(τu > T)
h(V (T))

h(u)

⎤⎦ .

(3.4)

4 TransformationS and determinantal
martingale representations

4.1 Definition ofS
We introduce a transformation,

S
[
f (W )

∣∣ (t, x)] :=et
∑
w∈Z

I|w−x|(−t)f (w), t ∈ [0,∞), x ∈ Z,

(4.1)

for f : Z → C. By the definition, S is a linear operator.
Note thatW in the LHS is a dummy variable, but it will be
useful to specify a function f as shown below.

Lemma 4.1. The transformation S is related with the
characteristic function of RW, (2.2) with (2.1) by

S
[
eα(W−x)

∣∣∣ (t, x)] = 1
ψV (t)(iα)

, α ∈ R. (4.2)

Proof. By the definition (4.1),

LHS of (4.2) =
∑
w∈Z

etI|w−x|(−t)eα(w−x) =
∑
k∈Z

etI|k|(−t)ekα

= et
{ ∞∑

s=0
e−sαIs(−t) +

∞∑
k=1

ekαIk(−t)
}
.

(4.3)

By the definition (1.2) of modified Bessel function, (4.3)
is equal to

et
{ ∞∑

s=0
e−sα

∞∑
�=0

1
�! (� + s)!

(
− t
2

)2�+s

+
∞∑
k=1

ekα
∞∑

�=0

1
�! (k + �)!

(
− t
2

)2�+k
}

= et
⎧⎨⎩

0∑
k=−∞

∞∑
�=0

1
�! (� − k)!

(
− t
2

)2�−k
ekα

+
∞∑
k=1

∞∑
�=k

1
�! (� − k)!

(
− t
2

)2�−k
ekα
}

= et
∞∑

�=0

∞∑
m=0

1
�!m!

(
− t
2

)�+m
e(�−m)α

= et
∞∑

�=0

1
�!

(
− t
2

)�

e�α
∞∑

m=0

1
m!

(
− t
2

)m
e−mα

= et exp
(

− t
2
eα
)
exp

(
− t
2
e−α

)
= exp[−t(coshα − 1)]= RHS of (4.2).
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Then the proof is completed.

4.2 Representations of martingales usingS
Lemma 4.2. With the transformation (4.1), the funda-
mental martingale polynomials for RW, {mn(t, x)}n∈N0 , t ∈
[0,∞), have the following representations,

mn(t, x) = S
[
Wn∣∣ (t, x)] , n ∈ N0, t ∈ [0,∞), x ∈ R.

Proof. By Lemma 4.1, we can see

Gα(t, x) = eαx

ψV (t)(iα)
= S

[
eαW

∣∣ (t, x)] , α ∈ R,

for Gα(t, x) given by ( 2.7) in Section 2.2. We expand the
equality with respect to α around α = 0, and we get the
lemma.

A direct consequence of Lemma 4.2 is the following.

Lemma 4.3. Assume that f is polynomial. Then S
[
f (W )

∣∣
(t,V (t))] is an Ft-martingale.

The transformation (4.1) is extended to the linear trans-
formation of functions of x ∈ ZN so that, if F(k)(x) =∏N

j=1 f
(k)
j (xj), k = 1, 2, then

S
[
F(k)(W )

∣∣∣ {(t�, x�)}N�=1

]
=

N∏
j=1

S
[
f (k)
j (Wj)

∣∣∣ (tj, xj)] ,
k = 1, 2,

and

S
[
c1F(1)(W ) + c2F(2)(W )

∣∣∣ {(t�, x�)}N�=1

]
= c1S

[
F(1)(W )

∣∣∣ {(t�, x�)}N�=1

]
+ c2S

[
F(2)(W )

∣∣∣ {(t�, x�)}N�=1

]
,

c1, c2 ∈ C, for 0 < tj < ∞, 1 ≤ j ≤ N , where
W = (W1, . . . ,WN ) ∈ ZN . In particular, if t� = t, 1 ≤
∀� ≤ N , we write S

[·|{(t�, x�)}N�=1
]
simply as S[·|(t, x)]

with x = (x1, . . . , xN ). By multiliniearity of determinant,
the Vandermonde determinant does not change in replac-
ing xk−1

i by any monic polynomial of xj of degree k − 1,
1 ≤ j, k ≤ N . Sincemk−1(t, xj) is a monic polynomial of xj
of degree k − 1,

h(V (t))
h(u)

= 1
h(u)

det
1≤j,k≤N

[
mk−1(t,Vj(t))

]
= 1

h(u)
det

1≤j,k≤N

[
S
[
Wk−1

j

∣∣∣ (t,Vj(t))
]]

= S
[

1
h(u)

det
1≤j,k≤N

[
Wk−1

j

]∣∣∣∣ (t,V (t))
]
,

where we have used the multilinearity of determinant.
Therefore, we have obtained the equality,

h(V (t))
h(u)

= S
[
h(W )

h(u)

∣∣∣∣ (t,V (t))
]
, t ∈ [0,∞). (4.4)

We set ξ = ∑N
j=1 δuj ∈ M0 and consider a set of

functions of z ∈ C,

�
uk
ξ (z) =

∏
1≤j≤N ,
j �=k

z − uj
uk − uj

, 1 ≤ k ≤ N . (4.5)

For each 1 ≤ k ≤ N , the function�
uk
ξ (z) is a polynomial

of z with degree N − 1 with zeros at uj, 1 ≤ j ≤ N , j �= k
and �

uk
ξ (uk) = 1. By lemma 4.3 we can prove that, for

each 1 ≤ k ≤ N ,

Muk
ξ (t,Vj(t)) := S

[
�

uk
ξ (Wj)

∣∣∣ (t,Vj(t))
]
, t ∈ [0,∞),

1 ≤ j ≤ N
(4.6)

provide independentFt-martingales. Then we see that for
0 ≤ t < ∞,

Eu
[
Muk

ξ (t,Vj(t))
]

= Eu
[
Muk

ξ (0,Vj(0))
]

= Muk
ξ (0,uj)

= �
uk
ξ (uj) = δj,k , 1 ≤ j, k ≤ N .

(4.7)

Now we consider the determinant identity [14],

h(z)
h(u)

= det
1≤j,k≤N

[
�

uk
ξ (zj)

]
, (4.8)

where ξ = ∑N
j=1 δuj , u = (u1, . . . ,uN ) ∈ WN , z =

(z1, . . . , zN ) ∈ CN and �
uk
ξ (z) is given by (4.5). Using this

identity for h(W )/h(u) in (4.4), we have

h(V (t))
h(u)

= S
[

det
1≤j,k≤N

[
�

uk
ξ (Wj)

]∣∣∣∣ (t,V (t))
]

= det
1≤j,k≤N

[
S[ �

uk
ξ (Wj)

∣∣∣ (t,Vj(t))]
]

= det
1≤j,k≤N

[
Muk

ξ (t,Vj(t))
]
, t ∈ [0,∞).

(4.9)

4.3 Determinantal martingales representation
Since we consider the noncolliding RW as a process rep-
resented by an unlabeled configuration (3.1), measurable
functions of �(·) are only symmetric functions of N vari-
ables, Xj(·), 1 ≤ j ≤ N . Then, we obtain the following
representation. Following [9], we call it the determinantal
martingale representation (DMR) for the present noncol-
liding RW.
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Proposition 4.4. Suppose that N ∈ N and ξ = ∑N
j=1 δuj

with u = (u1, . . . ,uN ) ∈ ZN ∩ WN . Let t ∈ [0,∞), t ≤
T ∈ [0,∞). For any F(t)-measurable bounded function F
we have

Eξ [F(�(·))]= Eu

⎡⎣F
⎛⎝ N∑

j=1
δVj(·)

⎞⎠ det
1≤j,k≤N

[
Muk

ξ (T ,Vj(T))
]⎤⎦.

(4.10)

That is the present process (�,Pξ ) has DMR associated
with (V ,Mξ ), whereMξ is defined by (4.6).

Proof. To prove (4.10), it is sufficient to consider the case
that F is given as F(�(·)) = ∏M

m=1 gm(X(tm)) for M ∈ N,
t1 < · · · < tM ≤ T ∈ [0,∞), with symmetric bounded
measurable functions gm on ZN , 1 ≤ m ≤ M. Here we
prove the equalities

Eξ

[ M∏
m=1

gm(X(tm))

]

= Eu

[ M∏
m=1

gm(V (tm)) det
1≤j,k≤N

[
Muk

ξ (T ,Vj(T))
]]

.

(4.11)

By Lemma 3.2, the LHS of (4.11) is given by

Eu

[ M∏
m=1

gm(V (tm))1(τu > tM)
h(V (tM))

h(u)

]
, (4.12)

where we used the fact that h(V (t))/h(u) is an Ft-
martingale. At time t = τu, there are at least one pair
( j, j + 1) such that Vj(τu) = Vj+1(τu), 1 ≤ j ≤ N − 1. We
choose the minimal j. Let σj,j+1 be the permutation of the
indices j and j + 1 and for v = (v1, · · · , vN ) ∈ ZN we put
σj,j+1(v) = (vσj,j+1(k))

N
k=1 = (v1, . . . , vj+1, vj, . . . , vN ). Let u′

be the labeled configuration of the process at time t = τu.
Since u′

j = u′
j+1 by the above setting, under the probability

law Pu′ the processes V (t), t > τu and σj,j+1(V (t)), t > τu
are identical in distribution. Since gm, 1 ≤ m ≤ M are
symmetric, but h is antisymmetric, the Markov property
of the process V (·) gives

Eu

[ M∏
m=1

gm(V (tM))1(τu ≤ tM)
h(V (tM))

h(u)

]
= 0.

Therefore, (4.12) is equal to

Eu

[ M∏
m=1

gm(V (tm))
h(V (tM))

h(u)

]
= Eu

[ M∏
m=1

gm(V (tm))
h(V (T))

h(u)

]
,

where the Ft-martingale property of h(V (t))/h(u) was
used. By (4.9), (4.11) is concluded.
Next we check that Mξ satisfies the conditions (M1),

(M2) and (M3) for Definition 1.1 in [9]. Since �
uk
ξ (z) is a

polynomial of z of degreeN−1,Muk
ξ (t,V (t)) is expressed

by a linear combination of the polynomial martingales
{mn(t,V (t))}n∈N0 . Then Mξ (t,V (t)), 1 ≤ k ≤ N are Ft-
martingales. Then the condition (M1) is proved. Since we
assume ξ ∈ M0, then the set of zeros of �

uk
ξ (z) is differ-

ent from that of �
ul
ξ (z) for k �= l. Therefore the condition

(M2) is proved. By (4.7) we can check that the condition
(M3) is satisfied. Then the proof is completed.

5 Determinantal process
5.1 Correlation kernel
For any integer M ∈ N, a sequence of times t =
(t1, . . . , tM) ∈ [0,∞)M with t1 < · · · < tM ≤ T ∈ [0,∞),
and a sequence of continuous functions f = ( ft1 , . . . , ftM ),
the moment generating function of multitime distribution
of the process �(·) is defined by

�t
ξ [ f ] := Eξ

[
exp

{ M∑
m=1

∫
Z

ftm(x)�(tm, dx)
}]

. (5.1)

It is expand with respect to

χtm(·) = e ftm (·) − 1, 1 ≤ m ≤ M (5.2)

as

�t
ξ [ f ] =

∑
Nm≥0,
1≤m≤M

∑
x(m)
Nm∈ZNm∩WNm ,

1≤m≤M

M∏
m=1

Nm∏
j=1

χtm

(
x(m)
j

)

× ρξ

(
t1, x(1)

N1
; . . . ; tM, x(M)

NM

)
,

(5.3)

where x(m)
Nm

denotes
(
x(1)
1 , . . . , x(m)

Nm

)
, and ( 5.3) defines

the spatio-temporal correlation functions ρξ (·) for the
process (�(t), t ∈ [0,∞),Pξ ).
Given an integral kernel K(s, x; t, y); (s, x), (t, y) ∈

[0,∞) × Z, the Fredholm determinant is defined as

Det
(s,t)∈{t1,...,tm}2,

(x,y)∈Z2

[δstδx(y) + K(s, x; t, y)χt(y)]

=
∑

Nm≥0,
1≤m≤M

∑
x(m)
Nm∈ZNm∩WNm ,

1≤m≤M

M∏
m=1

Nm∏
j=1

χtm

(
x(m)
j

)

× det
1≤j≤Nm,1≤k≤Nn,

1≤m,n≤M

[
K(tm, x(m)

j ; tn, x(n)

k )
]
. (5.4)

Definition 5.1. (Definition 1.2 in [9]) If any moment gen-
erating function (5.1) is given by a Fredholm determinant,
the process (�,Pξ ) is said to be determinantal. In this
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case, all spatio-temporal correlation functions are given by
determinants as

ρξ

(
t1, x(1)

N1
; . . . ; tM, x(M)

NM

)
= det

1≤j≤Nm,1≤k≤Nn,
1≤m,n≤M

[
Kξ (tm, x(m)

j ; tn, x(n)

k )
]
, (5.5)

0 ≤ t1 < · · · < tM < ∞, 1 ≤ Nm ≤ N, x(m)
Nm

∈ SNm, 1 ≤
m ≤ M ∈ N. Here the integral kernel,Kξ : ([0,∞)×S)2 →
R, is a function of initial configuration ξ and is called the
correlation kernel.

The main theorem of the present paper is the following.

Theorem 5.2. For any initial configuration ξ ∈ M0 with
ξ(Z) = N ∈ N, the noncolliding RW, (�(t), t ∈ [0,∞),Pξ )

is determinantal with the kernel given by (1.1).

Proof. By Theorem 1.3 in [9], and Proposition 4.4 in the
present paper, we can prove that (�,Pξ ) is determinantal
with the kernel

K(s, x; t, y) =
N∑
j=1

p(s, x|uj)Muj
ξ (t, y)−1(s > t)p(s−t, x|y),

(5.6)

where p is the transition probability (2.3) and Mξ is
defined by (4.6). By Lemma 2.2 and (4.1) with (4.5),

K(s, x; t, y)

=
N∑
j=1

e−sI|x−uj|(s)et
∑
w∈Z

I|w−y|(−t)�uj
ξ (w)

− 1(s > t)e−(s−t)I|x−y|(s − t)

= et−s

⎧⎪⎪⎨⎪⎪⎩
N∑
j=1

∑
w∈Z

I|x−uj|(s)I|w−y|(−t)
∏

1≤�≤N ,
� �=j

w − u�

uj − u�

−1(s > t)I|x−y|(s − t)

⎫⎪⎬⎪⎭ . (5.7)

For w ∈ {uj}Nj=1,

∏
1≤�≤N ,

� �=j

w − u�

uj − u�

=
{
1, if w = uj,
0, if w = u�, � �= j.

(5.8)

We apply (5.8) to (5.7), and then we obtain

K(s, x; t, y)

= et−s

⎧⎪⎪⎨⎪⎪⎩
N∑
j=1

I|x−uj|(s)I|y−uj|(−t)

+
N∑
j=1

∑
w∈Z\{uk}Nk=1

I|x−uj|(s)I|y−w|(−t)

×
∏

1≤�≤N ,
� �=j

w − u�

uj − u�

− 1(s > t)I|x−y|(s − t)

⎫⎪⎪⎬⎪⎪⎭ .

Since any factor of the form f (t, y)/f (s, x) is irrelevant
for correlation kernels, we obtain (1.1). The proof is com-
pleted.

Remark 1. Johansson [8] considered the Poissonized
Plancherel measure and proved that it is a DPP. The
correlation kernel is given by

K(x, y) =
∞∑
k=1

Jx+k(2
√

α)Jy+k(2
√

α), x, y ∈ Z, (5.9)

with a parameter α > 0 of Poisson distribution, where
Jν(z) is the Bessel function related with Iν by [27]

Iν(z) =
{
e−νπ i/2Jν(iz), −π < arg(z) < π/2,
e3νπ i/2Jν(iz), π/2 < arg(z) < π .

When x �= y, (5.9) is written as

K(x, y) = √
α
Jx(2

√
α)Jy+1(2

√
α) − Jx+1(2

√
α)Jy(2

√
α)

x − y
.

It is called the discrete Bessel kernel. See also [1,26].
We notice that if we set uj = −j, 1 ≤ j ≤ N , and
s = t > 0, the first term of (1.1) seems to provide a finite-
term approximation of (5.9) with a negative parameter
α = −t2/4, since we see

N∑
j=1

Ix+j(t)Iy+j(−t) = iy−x
N∑
j=1

Jx+j(it)Jy+j(it).

5.2 Extension to infinite particle systems
For a ∈ {2, 3, . . .}, we consider a configuration onZ having
equidistant spacing a with an infinite number of particles,

ξaZ(·) =
∑
k∈Z

δak(·). (5.10)
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For the infinite-particle configuration (5.10), a one-
parameter family of linearly independent entire functions
of z ∈ C with a parameter k ∈ Z is defined by

�̂k
aZ(z) :=

∏
j∈Z,j �=k

z − aj
ak − aj

=
∏

n∈Z,n�=0

(
1 + z/a − k

n

)

= sin(π(z/a−k))
π(z/a−k)

= 1
2π

∫ π

−π

dλeiλ(z/a−k), k ∈ Z.

(5.11)

The entire functions (5.11) are regard as the limits of
polynomials (4.5) in the sense [12,18],

�̂k
aZ(z) = lim

L→∞ �ak
aZ∩[−L,L](z), z ∈ C. (5.12)

For (t, y) ∈ [0,∞) × Z, (5.11) defines

M̂k
aZ(t, y) := S

[
�̂k

aZ(W )

∣∣∣ (t, y)]
= 1

2π

∫ π

−π

dλe−iλkS[ eiλW/a∣∣ (t, y)]
= 1

2π

∫ π

−π

dλeiλ(y/a−k) exp
{
t
(
1−cos

λ

a

)}
, k ∈ Z.

(5.13)

It is readily to see that if V (t), t ∈ [0,∞) is a RW,
M̂k

aZ(t,V (t)), k ∈ Z are Ft-martingales.
Let Vj(t), t ∈ [0,∞), j ∈ Z be an infinite sequence of

independent RWs. Then we have an infinite sequence of
independent Ft-martingales,

M̂k
aZ(t,V (t)), k ∈ Z, t ∈[ 0,∞) (5.14)

for each a ∈ {2, 3, . . .} and k ∈ Z. We write the labeled
configuration (aj)j∈Z with an infinite number of particles
as aZ, and under PaZ, Vj(0) = aj, j ∈ Z. Then, for any
t ∈[ 0,∞),

EaZ
[
M̂k

aZ(t,Vj(t))
]

= EaZ
[
M̂k

aZ(0,Vj(0))
]

= M̂k
aZ(0, aj)

= δj,k , j, k ∈ Z. (5.15)

For n ∈ N, an index set {1, 2, . . . , n} is denoted by In.
Given x = (x1, . . . , xn) ∈ Zn, when J = {j1, . . . , jn′ } ⊂ In,
1 ≤ j1 < · · · < jn′ ≤ n, we put xJ = (xj1 , . . . , xjn′ ). Fix
N ∈ N. For J ⊂ IN , defined a determinantal martingale of
(5.14)

D̂aZ(t,V J(t)) = det
j,k∈J

[
M̂k

aZ(t,Vj(t))
]
, t ∈ [0,∞).

(5.16)

Let t ∈ [0,∞), t ≤ T ∈ [0,∞), N ′ ∈ N, N ′ < N , and FN ′
be a measurable function on ZN ′ . Then the reducibility∑
J⊂IN ,�J=N ′

EaZ
[
FN ′(V J(t))D̂aZ(T ,VN (T))

]
=

∑
J⊂IN ,�J=N ′

EaZ
[
FN ′(V J(t))D̂aZ(T ,V J(T))

]
=
∫
WN ′

ξ⊗N ′
aZ (dv)Ev

[
FN ′(VN ′(t))D̂aZ(T ,VN ′(T))

]
.

(5.17)

holds. The proof is the same as that for Lemma 2.1 in
[9], where the martingale property (5.15) plays an essen-
tial role. Note that the last expression of ( 5.17) does not
change even if we replace N in the LHS by any other
integer Ñ with Ñ > N . Based on such consistency in
reduction of DMRs and the fact (5.12), the noncolliding
RW with an infinite number of particles started at ξaZ is
defined as follows [9].

Definition 5.3. For each a ∈ {2, 3, . . .}, the noncolliding
RW started at ξaZ, denoted as (�(t), t ∈ [0,∞),PξaZ), is
defined by the following. Let t ∈ [0,∞), t ≤ T ∈ [0,∞). For
any F(t)-measurable bounded function F, which depends
at most n paths of RWs, n ∈ N, and is symmetric at each
time s ≤ t, s ∈ [0,∞), its expectation is given by

EξaZ [F(�(·))] = EaZ

⎡⎣F
⎛⎝ n∑

j=1
δVj(·)

⎞⎠ D̂aZ(T ,V In(T))

⎤⎦ .

(5.18)

Equation (5.18) says that the noncolliding RWhas DMR,
hence we can characterize this infinite particle system
(�(t), t ∈[ 0,∞),PξaZ) as follows.

Proposition 5.4. The noncolliding RW, (�(t), t ∈ [0,∞),
PξaZ), a ∈ {2, 3, . . .} is determinantal with the correlation
kernel given by (1.4).

Proof. We omit the irrelevant factor et−s in∑
j∈Z p(s, x|aj)M̂j

aZ(t, y)−1(s > t)p(s− t, x|y) and obtain
(1.4).

5.3 Relaxation phenomenon
In order to state the theorem, we define a DPP.

Definition 5.5. For a given density 0 < ρ < 1, the proba-
bility measure μsin

ρ on Z is defined as a DPP with the sine
kernel

Ksin
ρ (y − x) = sin(ρπ(y − x))

π(y − x)
.
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Theorem 5.6. For each a ∈ {2, 3, . . .}, the process (�(t),
t ∈ [0,∞),PξaZ) starting from the configuration (1.3)
shows a relaxation phenomenon to the stationary process
(�(t), t ∈ [0,∞),Pρ) with ρ = 1/a. The stationary process
(�(t), t ∈ [0,∞),Pρ) is reversible with respect to μsin

ρ and
is determinantal with the correlation kernel given by

Kρ(t−s, y−x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ρ

0
du cos(uπ(y−x))e−(t−s) cosuπ , if s < t,

sin(ρπ(y−x))
π(y − x)

, if s = t,

−
∫ 1

ρ

du cos(uπ(y−x))e−(t−s) cosuπ , if s > t.

(5.19)

Proof. We rewrite (2.3) as follows,

p(t, y|x) = 1
2π

∫ π

−π

dkeik(y−x)e−(1−cos k)t

= 1
2πa

∫ aπ

−aπ
dθeiθ(y−x)/aexp

{
−
(
1 − cos

(
θ

a

))
t
}

=
∫ 1

0
du cos(uπ(y − x)) exp {− (1 − cos(uπ)) t}

(5.20)

for t ∈ [0,∞), where a ∈ N. Then we have∑
j∈Z

p(s, x|aj)M̂j
aZ(t, y)

= 1
4π2a

∑
j∈Z

∫ aπ

−aπ
dθ

∫ π

−π

dλei(θx+λy)/ae−i(θ+λ)j

× exp {−s (1 − cos(θ/a)) + t(1 − cos(λ/a)} .
For (1.4), (s, x), (t, y) ∈[ 0,∞) × Z, we put

KξaZ(s, x; t, y)+1(s> t)p(s−t, x|y)=G(s, x; t, y)+R(s, x; t, y)

with

G(s, x; t, y) = 1
4π2a

∫
|θ |≤π

dθ

×
∫

|λ|≤π

dλei(θx+λy)/a+(t−s)(1−cos(λ/a))

×
∑
j∈Z

e−i(θ+λ)jes{cos(θ/a)−cos(λ/a)},

and

R(s, x; t, y) = 1
4π2a

∑
j∈Z

∫
π<|θ |≤aπ

dθ

×
∫

|λ|≤π

dλei(θx+λy)/a+(t−s)(1−cos(λ/a))

× e−i(θ+λ)jes{cos(θ/a)−cos(λ/a)}.

Since
∑

j∈Z e−i(θ+λ)j = 2πδ(θ + λ) for θ , λ ∈ (−π ,π],
we obtain

G(s, x; t, y) = 1
2πa

∫ π

−π

dλeiλ(y−x)/a+(t−s)(1−cos(λ/a))

=: G(t − s, y − x).
On the other hand, when π < |θ | ≤ aπ and |λ| ≤ π ,

cos(θ/a) < cos(λ/a). We get

ecos(θ/a)−cos(λ/a) < 1

Then for any fixed s, t ∈ (0,∞),

|R(s + τ , x; t + τ , y)| → 0 as τ → ∞
uniformly on any (x, y) ∈ Z2 and it implies

KξaZ(s+ τ , x; t + τ , y) → Kρ(t − s, y− x) as τ → ∞,
(5.21)

where

Kρ(t − s, y − x) = G(t − s, y − x) − 1(s > t)p(s − t, x|y)
= 1

2π

∫ ρπ

−ρπ

dλeiλ(y−x)+(t−s)(1−cosλ)

− 1(s > t)p(s − t, x|y).
This is equal to (5.19) up to an irrelevant factor et−s.

Here we remark ρ = 1/a gives the particle density
on Z. The convergence of the correlation kernel (5.21)
implies the convergence of generating function for corre-
lation functions �t

ξaZ
[ f ], and thus the convergence of the

determinantal process to an equilibrium determinantal
process. Thus the proof is completed.

This is an example of relaxation phenomena discussed
in [9-13].

Remark 2. If the initial configuration is ξZ, all sites
are occupied and there occurs no time-evolution in the
present system. In this case we have KξZ(s, x; t, y) =
I|x−y|(s − t)1(s ≤ t). Since In(0) = δn,0, n ∈ N, it gives a
trivial result, ρξZ ≡ 1.
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