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Non-separability of the Lipschitz distance
Kohei Suzuki* and Yohei Yamazaki

Abstract
Let X be a compact metric space andMX be the set of isometry classes of compact metric spaces Y such that the
Lipschitz distance dL(X , Y) is finite. We show that (MX , dL) is not separable when X is a closed interval, or an infinite
union of shrinking closed intervals.
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1 Introduction
For compact metric spaces (X, dX) and (Y , dY ), the
Lipschitz distance dL(X,Y ) is defined to be the infimum
of ε ≥ 0 such that an ε-isometry f : X → Y exists. Here
a bi-Lipschitz homeomorphism f : X → Y is called an
ε-isometry if

| log dil(f )| + | log dil (f −1) | ≤ ε,

where dil(f ) denotes the smallest Lipschitz constant of f ,
called the dilation of f :

dil(f ) = sup
x,y∈X
x�=y

dY (f (x), f (y))
dX(x, y)

.

LetM be the set of isometry classes of compact metric
spaces. It is well-known that (M, dL) is a complete met-
ric space. See, e.g., ([4] Appendix A) for the proof of the
completeness and see, e.g., [1,2] for details of the Lipschitz
distance.
Then the following question arises:

(Q): Is the metric space (M, dL) separable?

The answer is no, which can be seen easily by the
following facts:

(a) if dL(X,Y ) < ∞, the Hausdorff dimensions of X and
Y must coincide;

(b) for any non-negative real number d, there is a com-
pact metric space X whose Hausdorff dimension is
equal to d.

See, e.g., ([1] Proposition 1.7.19) for (a) and [3] for (b).
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The fact (b) indicates that (M, dL) is too big to be sep-
arable. Then we change the question (Q) to the following
more reasonable one (Q’): For a compact metric space X,
let MX be the set of isometry classes of compact met-
ric spaces Y such that dL(X,Y ) < ∞. Any elements of
MX have a common Hausdorff dimension by (a). Then
the following question arises:

(Q’): Is the metric space (MX , dL) separable?

The main results of this paper give the negative answer
for this question for several X. To be more precise, we give
two examples for X such that (MX , dL) is not separable:

(i) Infinite unions of shrinking closed intervals with
zero

{0} ∪
∞⋃

n=1

[
1
2n

,
1
2n

+ 1
2n+1

]
;

(ii) Closed interval [ 0, 1].

We would like to stress that (MX , dL) becomes non-
separable even when X are the above elementary cases.
We note that the non-separability of the first example
follows from the non-separability of the second exam-
ple. The first example, however, is easier to show the
non-separability than the second example.
The present paper is organized as follows: In the first

section, we show that the set of isometry classes of the
infinite unions of shrinking closed intervals with zero
is not separable. In the second section, we show that
the set of isometry classes of the closed interval is not
separable.
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2 The first example
Let Z>0 = {n ∈ Z>0 : n > 0} denote the set of positive
integers. For n,m ∈ Z>0, let I(n,m) be an interval in R

defined as follows:

I(n,m) =
[
1
2n

,
1
2n

+ 1
2n+m

]
.

For each u = (un)n∈Z>0 ∈ {1, 2}Z>0 , we define the
following subset in R:

Xu = {0} ∪
∞⋃

n=1
I(n,un). (1)

We equip Xu with the usual Euclidean metric in R:

d(x, y) = |x − y|, x, y ∈ Xu.

Then it is easy to check that (Xu, d) is a compact metric
space.
Let 1 = (1, 1, 1, . . .) ∈ {1, 2}Z>0 denote the element

in {1, 2}Z>0 such that all components are equal to one.
Let X1 be the set defined in (1) for the element 1. Let
MX1 denote the set of isometry classes of compact met-
ric spaces X whose Lipschitz distances from X1 are finite,
that is, dL(X,X1) < ∞. Then we have the following result:

Theorem 1. (MX1 , dL) is not separable.

Proof 1. It is enough to find a certain discrete subset X ⊂
MX1 with the continuous cardinality. We introduce a sub-
set X ⊂ M, which is the set of isometry classes of all Xu for
u ∈ Z>0:

X =
{
(Xu, d) : u ∈ {1, 2}Z>0

}
/isometry.

It is clear that the cardinality of X is continuum. We
show that X ⊂ MX1 and X is discrete (i.e., every point in
X is isolated).
We first show that X ⊂ MX1 . For u = (un)n∈Z>0 ∈

{1, 2}Z>0 and v = (vn)n∈Z>0 ∈ {1, 2}Z>0 , let fu,v be a
function from Xu to Xv defined by

fu,v(x) =
⎧
⎨

⎩

0 (x = 0),
2un
2vn

(
x − 1

2n

)
+ 1

2n
(
x ∈ I(n,un)

)
.

Then fu,v is a bi-Lipschitz continuous function from Xu to
Xv and for x, y ∈ Xu,

1
2
|x − y| ≤ |fu,v(x) − fu,v(y)| ≤ 2|x − y|.

Therefore the Lipschitz distance between Xu and Xv is
bounded by

dL(Xu,Xv) ≤ 2 log 2 for any u, v ∈ Z>0.

Thus we have that X ⊂ MX1 .
Second we show that X is discrete:

Lemma 1. Let Xu,Xv ∈ X. If dL(Xu,Xv) < log 2, then
u =v.

Proof 2. Let u = (un)n∈Z>0 ∈ {1, 2}Z>0 and v =
(vn)n∈Z>0 ∈ {1, 2}Z>0 . We show that un = vn for all n ∈
Z>0. By the assumption dL(Xu,Xv) < log 2, there exists a
bi-Lipschitz function f : Xu → Xv such that

| log dil(f )| + | log dil (f −1) | < log 2. (2)

Since f is homeomorphic, any intervals must be mapped
to intervals by f . That is, there exists a bijection P : Z>0 →
Z>0 as n 
→ P(n) such that

f (I(n,un)) = I
(
P(n), vP(n)

)
.

To show un = vn for all n ∈ Z>0, we have two steps:

(i) n + un = P(n) + vP(n);
(ii) P(n) = n.

We start to show (i) by contradiction. Assume there exists
n0 ∈ Z>0 such that n0 + un0 �= P(n0) + vP(n0). Since
f |I(n0,un0 ) is homeomorphic, the endpoints of I(n0,un0)
must be mapped to the endpoints of I(P(n0), vP(n0)) by
f |I(n0,un0 ). Therefore

∣∣∣
∣ f

(
1
2n0

)
− f

(
1
2n0

+ 1
2n0+un0

)∣
∣∣∣ = 1

2P(n0)+vP(n0)
.

Thus the dilation of f is at least bigger than

dil(f ) ≥ |f (1/2n0) − f (1/2n0 + 1/2n0+un0 )|
|1/2n0 − (1/2n0 + 1/2n0+un0 )|

= 1
2P(n0)+vP(n0)−(n0+un0 )

.

By the assumption of n0 + un0 �= P(n0) + vP(n0), we have
that dil(f ) ≥ 2 or dil

(
f −1) ≥ 2. This implies

| log dil(f )| ≥ log 2 or | log dil ( f −1) | ≥ log 2.

This contradicts the inequality (2). Hence we have n +
un = P(n) + vP(n) for all n ∈ Z>0.
We start to show (ii) by contradiction. Assume there

exists n0 ∈ Z>0 such that P(n0) �= n0. Let us define

n∗ = min {n ∈ Z>0|P(n) �= n} .
Then P(n∗) > n∗ by definition. Since we know that n +

un = P(n)+ vP(n) by the first step (i), and that un and vP(n)

are in {1, 2}, thus the possibility of values of P(n) is that
P(n) = n− 1, n or n+ 1. This implies that P(n∗) = n∗ + 1,
P(n∗ +1) = n∗ and P(n∗ +2) = n∗ +2, or n∗ +3. Since the
endpoints of intervals must be mapped to the endpoints of
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intervals by f , the possibility of values of f
(
1/2n∗+1) and

f
(
1/2n∗+2) is

f
(

1
2n∗+1

)
= 1

2n∗ , or
1
2n∗ + 1

2n∗+vn∗
,

and

f
(

1
2n∗+2

)
= 1

2n∗+2 ,
1

2n∗+2 + 1
2n∗+2+v(n∗+2)

,
1

2n∗+3 ,

or
1

2n∗+3 + 1
2n∗+3+v(n∗+3)

.

Thus, by noting vP(n∗+2) ∈ {1, 2}, we have the following
estimate:

∣∣∣∣ f
(

1
2n∗+1

)
− f

(
1

2n∗+2

)∣∣∣∣

≥
∣∣∣∣
1
2n∗ −

(
1

2n∗+2 + 1
2n∗+2+vP(n∗+2)

)∣∣∣∣

≥ 5
2

1
2n∗+2 .

This shows | log dil(f )| ≥ log(5/2) and contradicts the
inequality (2). Hence we have P(n) = n for all n ∈ Z>0.
By the above two steps, we have that un = vn for all n ∈

Z>0, and we have completed the proof of Lemma 1.
We resume the proof of Theorem 1.

Proof of Theorem 1. By using Lemma 1, we know that
(X, dL) is discrete. Since the cardinality of X is continuum
and X ⊂ MX1 , we have that (MX1 , dL) is not separable.
We have completed the proof.

3 The second example
In this section, we show the non-separability ofM[0,1]:

Theorem2. Themetric space (M[0,1], dL) is not separable.

Proof. It is enough to find a certain discrete subset Y ⊂
M[0,1] with the continuous cardinality.
Define two subsets, flat parts J(n, 0), and pulse parts

J(n, 1) in R
2:

• Flat part: for n ∈ Z>0,

J(n, 0) =
[
1
2n

,
1

2n−1

]
× {0},

• Pulse part: for n ∈ Z>0,

J(n, 1) =
[

3
2n+1 ,

1
2n−1

]
× {0}

∪
{(

x,
3

2n+1 − x
)
:

5
2n+2 ≤ x ≤ 3

2n+1

}

∪
{(

x, x − 1
2n

)
:
1
2n

≤ x ≤ 5
2n+2

}
.

See the Figure 1.
For each u = (un)n∈Z>0 ∈ {0, 1}Z>0 , let Yu be a subset in

R
2 as an infinite union of flat parts and pulse parts with

the origin:

Yu = {(0, 0)} ∪
∞⋃

n=1
J(n,un) ⊂ R

2.

See the Figure 2.
We equip Yu with the usual Euclidean distance in R

2:

d((x1, x2), (y1, y2)) =
((
x1 − y1)2 + (x2 − y2

)2)1/2 . (3)

It is easy to check that (Yu, d) is a compact metric space.
Let Y be the set of isometry classes of Yu for all u ∈
{0, 1}Z>0 :

Y =
{
Yu : u ∈ {0, 1}Z>0

}
/isometry.

Now we show that Y ⊂ M[0,1]. For u ∈ {0, 1}Z>0 ,
let fu be the projection from Yu to [0, 1] such that x =
(x1, x2) 
→ x1. Then it is easy to see that fu is bi-Lipschitz
continuous and, for x, y ∈ Yu,

1√
2
d(x, y) ≤ | fu(x) − fu(y)| ≤ d(x, y). (4)

Therefore the Lipschitz distance between [0, 1] and Yu
is bounded by

dL ([0, 1] ,Yu) ≤ 1
2
log 2 ∀u ∈ {0, 1}Z>0 .

Thus we have Y ⊂ M[0,1].
Now we show that Y is discrete:

Lemma 2. Let Yu,Yv ∈ Y. If

dL(Yu,Yv) <
log

(√
2 + 1

)
− log

√
5

2
,

then u = v.

Figure 1 The left is J(n, 0) and the right is J(n, 1).
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10
Figure 2 A picture of Yu.

Proof 3. Let u = (un)n∈Z>0 ∈ {1, 2}Z>0 and v =
(vn)n∈Z>0 ∈ {1, 2}Z>0 . We show that un = vn for all n ∈
Z>0. By the assumption, there exists a bi-Lipschitz function
f from Yu to Yv such that

| log dil( f )| + | log dil ( f −1) | <
log

(√
2 + 1

)
− log

√
5

2
.

(5)

Let us define a subset in Z>0 as follows:

Pu = {n ∈ Z>0 : un = 1}.

Without loss of generality, we may assume that Pu is not
empty. That is, Yu has at least one pulse. The pulse part
J(n,un) of Yu for n ∈ Pu is called n-pulse of Yu. We note
that, by the definition of the pulse parts, the peak of the
n-pulse is attained at 5/2n+2 in x-axis.
It is enough for the desired result to show that Pu = Pv.

We show that there is a bijection F : Pu → Pv such that
F(n) = n. To show this, we have the following three steps:

(i) The first step: for n ∈ Pu,

fv ◦ f ◦ f −1
u

(
5

2n+2

)
∈

{
5

2m+2 : m ∈ Z>0

}

∪
{

3
2m+1 : m ∈ Z>0

}

∪
{

1
2m

: m ∈ Z>0

}
.

(ii) The second step: for n ∈ Pu,

fv ◦ f ◦ f −1
u

(
5

2n+2

)
/∈

{
3

2m+1 : m ∈ Z>0

}

∪
{

1
2m

: m ∈ Z>0

}
.

(iii) The third step: for n ∈ Pu,

fv ◦ f ◦ f −1
u

(
5

2n+2

)
= 5

2n+2 and vn = 1.

In fact, if we show the above three statements, each
maximizers 5/2n+2 of n-pulses of Yu are mapped to the
maximizers 5/2n+2 of n-pulses of Yv by fv ◦ f ◦ f −1

u . This
correspondence of n-pulses defines the map F : Pu → Pv
such that F(n) = n.
The proof of the all three steps (i)-(iii) are governed by the

same scheme:

(A) Assume that the statements do not hold (proof by
contradiction);

(B) Estimate lower bounds of the dilations of f and f −1;
(C) The lower bounds obtained in (B) contradict the

inequality (5).

We start to show the first step (i). Since f is homeomor-
phic, the maximizer 5/2n+2 of the pulse cannot be mapped
to the endpoints of [ 0, 1] by fv ◦ f ◦ f −1

u . Assume that, for
some n ∈ Pu,

fv ◦ f ◦ f −1
u

(
5

2n+2

)
/∈

{
5

2m+2 : m ∈ Z>0

}

∪
{

3
2m+1 : m ∈ Z>0

}

∪
{

1
2m

: m ∈ Z>0

}
,

and prove (i) by contradiction. By the continuity of f , there
exists 0 < δ < 1/2n+3 such that, for any x ∈[ 5/2n+2 −
δ, 5/2n+2 + δ], we have

fv ◦ f ◦ f −1
u (x) /∈

{
5

2m+2 : m ∈ Z>0

}

∪
{

3
2m+1 : m ∈ Z>0

}

∪
{

1
2m

: m ∈ Z>0

}
.

Therefore we have

d
(
f ◦ f −1

u

(
5

2n+2 − δ

)
, f ◦ f −1

u

(
5

2n+2 + δ

))

= d
(
f ◦ f −1

u

(
5

2n+2 − δ

)
, f ◦ f −1

u

(
5

2n+2

))

+ d
(
f ◦ f −1

u

(
5

2n+2

)
, f ◦ f −1

u

(
5

2n+2 + δ

))
.

Here we use the fact that the three points f ◦f −1
u (5/2n+2−

δ), f ◦ f −1
u (5/2n+2) and f ◦ f −1

u (5/2n+2 + δ) are on the
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same line. By using the inequality (4), the dilation of f is
estimated as follows:

dil(f ) ≥
d

(
f ◦ f −1

u

(
5

2n+2 − δ
)
, f ◦ f −1

u

(
5

2n+2 + δ
))

d
(
f −1
u

(
5

2n+2 − δ
)
, f −1
u

(
5

2n+2 + δ
))

=
d

(
f ◦ f −1

u

(
5

2n+2 − δ
)
, f ◦ f −1

u

(
5

2n+2

))

2δ

+
d

(
f ◦ f −1

u

(
5

2n+2

)
, f ◦ f −1

u

(
5

2n+2 + δ
))

2δ

≥
d

(
f −1
u

(
5

2n+2 − δ
)
, f −1
u

(
5

2n+2

))

2δdil(f −1)

+
d

(
f −1
u

(
5

2n+2

)
, f −1
u

(
5

2n+2 + δ
))

2δdil(f −1)

=
√
2

dil(f −1)
.

In the above last line, we just calculated the distance
following the Euclidean distance (3) in the n-pulse J(n, 1).
This implies that dil( f ) ≥ 2

1
4 , or dil(f −1) ≥ 2

1
4 . Thus we

have

dL(Yu,Yv) ≥ log 2
4

.

This contradicts the inequality (5). Therefore we have, for
any n ∈ Pu,

fv ◦ f ◦ f −1
u

(
5

2n+2

)
∈

{
5

2m+2 : m ∈ Z>0

}

∪
{

3
2m+1 : m ∈ Z>0

}

∪
{

1
2m

: m ∈ Z>0

}
.

We start to show the second step (ii) by contradiction.
Assume that, for some n ∈ Pu,

fv ◦ f ◦ f −1
u

(
5

2n+2

)
∈

{
1
2m

: m ∈ Z>0

}
.

Then there exists n1 ∈ Z>0 such that

fv ◦ f ◦ f −1
u

(
5

2n+2

)
= 1

2n1
. (6)

By the same argument as the first step (i), we can obtain
vn1 = 1, that is, the n1-pulse exists in Yv. By the continuity
of f , there exists 0 < δ < 1/2n1+3 such that

fu ◦ f−1 ◦ f−1
v

([
1
2n1

− δ,
1
2n1

))
⊂

(
5

2n+2 − 1
2n+3 ,

5
2n+2

)

∪
(

5
2n+2 ,

5
2n+2 + 1

2n+3

)
,

and

fu ◦ f−1 ◦ f−1
v

((
1
2n1

,
1
2n1

+ δ

])
⊂

(
5

2n+2 − 1
2n+3 ,

5
2n+2

)

∪
(

5
2n+2 ,

5
2n+2 + 1

2n+3

)
.

Noting the definition of (Yv, d), for x ∈ [ 1
2n1 − δ, 1

2n1
)
and

y ∈ ( 1
2n1 ,

1
2n1 + δ

]
, we have

d
(
f −1
v (x), f −1

v (y)
) =

(

|x − y|2 +
∣∣∣∣ y − 1

2n1

∣∣∣∣

2
)1/2

,

d
(
f −1
v (x), f −1

v

(
1
2n1

))
=

∣∣∣∣x − 1
2n1

∣∣∣∣ ,

d
(
f −1
v (y), f −1

v

(
1
2n1

))
= √

2
∣∣∣∣y − 1

2n1

∣∣
∣∣ .

Since |x − y| = |x − 2−n1 | + |y − 2−n1 |, we have the
following inequality:

d
(
f −1
v (x), f −1

v

(
1
2n1

))
+ d

(
f −1
v (y), f −1

v

(
1
2n1

))

=
(
|x − 2−n1 |2 + 2

√
2|x − 2−n1 ||y − 2−n1 |

+ 2|y − 2−n1 |2)1/2

≤
(√

2|x − 2−n1 |2 + 2
√
2|x − 2−n1 ||y − 2−n1 |

+ 2
√
2|y − 2−n1 |2

)1/2

= 2
1
4 d

(
f −1
v (x), f −1

v (y)
)
.

(7)

On the other hand, there exist x0 ∈ [ 1
2n1 − δ, 1

2n1
)
and

y0 ∈ ( 1
2n1 ,

1
2n1 + δ

]
such that

d
(
f −1 ◦ f −1

v (x0), f −1
u

(
5

2n+2

))

= d
(
f −1 ◦ f −1

v (y0), f −1
u

(
5

2n+2

))
.

Thus the triangle determined by the three vertices f ◦
f −1
v (x0), f ◦ f −1

v (y0) and f −1
u

(
5/2n+2) is an isosceles right

triangle, and we can calculate

d
(
f −1 ◦ f −1

v (x0), f −1 ◦ f −1
v (y0)

)
(8)

= 1√
2
d

(
f −1 ◦ f −1

v (x0), f −1
u

(
5

2n+2

))

+ 1√
2
d

(
f −1 ◦ f −1

v (y0), f −1
u

(
5

2n+2

))
.
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By (6), (7) and (8), we have a bound for the dilation of f :

1
dil( f )

≤ d
(
f −1 ◦ f −1

v (x0), f −1 ◦ f −1
v (y0)

)

d
(
f −1
v (x0), f −1

v (y0)
)

=
d

(
f −1 ◦ f −1

v (x0), f −1
u

(
5

2n+2

))

√
2d

(
f −1
v (x0), f −1

v (y0)
)

+
d

(
f −1 ◦ f −1

v (y0), f −1
u

(
5

2n+2

))

√
2d

(
f −1
v (x0), f −1

v (y0)
)

≤ dil
(
f −1) d

(
f −1
v (x0), f −1

v
( 1
2n1

))

√
2d( f −1

v (x0), f −1
v (y0))

+ dil
(
f −1) d

(
f −1
v (y0), f −1

v
( 1
2n1

))

√
2d

(
f −1
v (x0), f −1

v (y0)
)

≤ 1
2

1
4
dil

(
f −1) .

(9)

Here we used the equality (8) in the second and third
lines, the equality (6) and the definition of the dilation
in the fourth and fifth lines, and the inequality (7) in the
last line. The inequality (9) implies that dil(f ) ≥ 2

1
8 or

dil(f −1) ≥ 2
1
8 . Thus we have

dL(Yu,Yv) ≥ log 2
8

.

This contradicts the inequality (5). Therefore we have, for
any n ∈ Pu,

fv ◦ f ◦ f −1
u

(
5

2n+2

)
/∈

{
1
2m

: m ∈ Z>0

}
.

By the same argument as above, we have, for any n ∈ Pu,

fv ◦ f ◦ f −1
u

(
5

2n+2

)
/∈

{
3

2m+1 : m ∈ Z>0

}
.

Now we start to show the third step (iii). By the above two
steps (i) and (ii), we have that, for any n ∈ Pu, there exists
pf (n) ∈ Z>0 such that

fv ◦ f ◦ f −1
u

(
5

2n+2

)
= 5

2pf (n)+2 .

By the same argument as the first step (i), we can check
that pf (n) ∈ Pv, that is, vpf (n) = 1. Also for the inverse
function f −1, we have that, for any n ∈ Pv, there exists
pf −1(n) ∈ Pu such that

fu ◦ f −1 ◦ f −1
v

(
5

2n+2

)
= 5

2pf−1 (n)+2 .

Since f is a bijection, the map pf is a bijection from Pu to
Pv and p−1

f = pf −1 .
Now it suffices to show that pf (n) = n for all n ∈ Pu.

We assume that there exists l ∈ Pu such that pf (l) �= l.

Without loss of generality, we may assume pf (l) > l. We
first show that

fu ◦ f −1 ◦ f −1
v

(
1

2pf (l)

)
∈

(
1
2l
,

5
2l+2

)
∪

(
5

2l+2 ,
3

2l+1

)
.

(10)

To show this, it suffices to show that
√
2

2l+2 > d
(
f −1 ◦ f −1

v

(
1

2pf (l)

)
, f −1
u

(
5

2l+2

))
,

where the above inequality means that the point f −1 ◦
f −1
v

(
1

2pf (l)

)
belongs to one of two edges in the l-pulse cross-

ing at the right angle. By pf −1 ◦ pf (l) = p−1
f ◦ pf (l) = l, we

have
√
2dil

(
f −1)

2pf (l)+2 = dil
(
f −1) d

(
f −1
v

(
1

2pf (l)

)
, f −1
v

(
5

2pf (l)+2

))

≥ d
(
f −1 ◦ f −1

v

(
1

2pf (l)

)
, f −1 ◦ f −1

v

(
5

2pf (l)+2

))

= d
(
f −1 ◦ f −1

v

(
1

2pf (l)

)
, f −1
u

(
5

2pf−1◦pf (l)+2

))
.

= d
(
f −1 ◦ f −1

v

(
1

2pf (l)

)
, f −1
u

(
5

2l+2

))
.

Since we have dil
(
f −1) ≤ 2

1
4 (by the inequality (5)) and

pf (l) ≥ l + 1, it holds
√
2

2l+2 >

√
2dil(f −1)

2pf (l)+2 ≥d
(
f −1◦ f −1

v

(
1

2pf (l)

)
, f −1
u

(
5

2l+2

))
.

Thus we have shown (10).
By the continuity of f and (10), there exists δ > 0 such

that δ < 1
2pf (l)+3 and

fu ◦ f −1 ◦ f −1
v

([
1

2pf (l)
− δ,

1
2pf (l)

+ δ

])

⊂
(
1
2l
,

5
2l+2

)
∪

(
5

2l+2 ,
3

2l+1

)
.

Since the three points f −1 ◦ f −1
v

(
1

2pf (l)
− δ

)
, f −1 ◦

f −1
v

(
1

2pf (l)

)
and f −1 ◦ f −1

v

(
1

2pf (l)
+ δ

)
are on the same line,

we have

d
(
f −1 ◦ f −1

v

(
1

2pf (l)
− δ

)
, f −1 ◦ f −1

v

(
1

2pf (l)
+ δ

))

= d
(
f −1 ◦ f −1

v

(
1

2pf (l)
− δ

)
, f −1 ◦ f −1

v

(
1

2pf (l)

))

+ d
(
f −1 ◦ f −1

v

(
1

2pf (l)

)
, f −1 ◦ f −1

v

(
1

2pf (l)
+ δ

))
.

(11)
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Thus the inclusion (10) and the equality (11) imply the
following bound of the dilation of f :

dil(f −1)

≥
d

(
f −1 ◦ f −1

v

(
1

2pf (l)
− δ

)
, f −1 ◦ f −1

v

(
1

2pf (l)
+ δ

))

d
(
f −1
v

(
1

2pf (l)
− δ

)
, f −1
v

(
1

2pf (l)
+ δ

))

=
d

(
f −1 ◦ f −1

v

(
1

2pf (l)
− δ

)
, f −1 ◦ f −1

v

(
1

2pf (l)

))

√
5δ

+
d

(
f −1 ◦ f −1

v

(
1

2pf (l)

)
, f −1 ◦ f −1

v

(
1

2pf (l)
+ δ

))

√
5δ

≥
d

(
f −1
v

(
1

2pf (l)
− δ

)
, f −1
v

(
1

2pf (l)

))

√
5δdil(f )

+
d

(
f −1
v

(
1

2pf (l)

)
, f −1
v

(
1

2pf (l)
+ δ

))

√
5δdil(f )

=
√
2 + 1√
5dil(f )

.

Here we used the following equality in the third and
fourth lines:

d
(
f −1
v

(
1

2pf (l)
− δ

)
, f −1
v

(
1

2pf (l)
+ δ

))

=
(∣∣

∣∣
1

2pf (l)
− δ −

(
1

2pf (l)
+ δ

)∣∣∣∣

2
+ |δ|2

)1/2

= √
5δ.

Thus dil(f ) ≥
(√

2+1√
5

)1/2
or dil(f −1) ≥

(√
2+1√
5

)1/2
.

This contradicts the inequality (5). Therefore we have
pf (n) = n for any n ∈ Pu.
We have completed all of the three steps. Setting F(n) =

pf (n), we have that the map F : Pu → Pv is a bijection
such that F(n) = n and this implies Pu = Pv. We have
completed the proof.
We resume the proof of Theorem 2.

Proof of Theorem 2. By using Lemma 2, we know that
(Y, dL) is discrete. Since the cardinality of Y is continuum
andY ⊂ M[0,1], we have that (M[0,1], dL) is not separable.
We have completed the proof.

Remark 1. Theorem 2 says that M[0,1] = {X ∈ M :
d([ 0, 1] ,X) < ∞} is not separable. By the proof of
Theorem 2, moreover we know the following stronger result:
Let BdL([ 0, 1] , δ) denote the ball in M[0,1] centered at

[ 0, 1] with radius δ > 0 with respect to the Lipschitz
distance dL, that is,

BdL([ 0, 1] , δ) = {X ∈ M[0,1] : dL([ 0, 1] ,X) < δ}.

Then, for any δ > 0, B([0, 1] , δ) is not separable.
In fact, let

Jε(n, 1) = [
3/2n+1, 1/2n−1] × {0}

∪ {
(x, ε(3/2n+1−x) : 5/2n+2 ≤ x ≤ 3/2n+1}

∪ {
(x, ε(x − 1/2n)) : 1/2n ≤ x ≤ 5/2n+2} ,

Jε(n, 0) = J(n, 0),

Y ε
u = {(0, 0)} ∪

∞⋃

n=1
Jε(n,un), u=(un)n∈Z>0∈{0, 1}Z>0.

Then, by the similar proof to that of Theorem 2, we obtain

(i) For every ε > 0, the set

Y
ε =

{
Y ε
u : u ∈ {0, 1}Z>0

}
/isometry

is discrete with cardinality of the continuum.
(ii) For every δ > 0, there exists ε > 0 such that Yε ⊂

BdL([ 0, 1] , δ).

The statement (ii) implies that BdL([ 0, 1] , δ) is not sepa-
rable for any δ > 0.
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