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A property of randomwalks on a cycle graph
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Abstract

We analyze the Hunter vs. Rabbit game on a graph, which is a model of communication in adhoc mobile networks.
Let G be a cycle graph with N nodes. The hunter can move from a vertex to a vertex along an edge. The rabbit can
jump from any vertex to any vertex on the graph. We formalize the game using the random walk framework. The
strategy of the rabbit is formalized using a one dimensional random walk over Z. We classify strategies using the
order O(k−β−1) of their Fourier transformation. We investigate lower bounds and upper bounds of the probability
that the hunter catches the rabbit. We found a constant lower bound if β ∈ (0, 1) which does not depend on the size
N of the graph. We show the order is equivalent to O(1/ logN) if β = 1 and a lower bound is 1/N(β−1)/β if β ∈ (1, 2].
These results help us to choose the parameter β of a rabbit strategy according to the size N of the given graph. We
introduce a formalization of strategies using a random walk, theoretical estimation of bounds of a probability that the
hunter catches the rabbit, and also show computing simulation results.
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1 Introduction
We consider a game played by two players: the hunter and
the rabbit. This game is described using a graph G(V ,E)

where V is a set of vertices and E is a set of edges. Both
players may use a randomized strategy. The hunter can
move from vertex to vertex along edges. The rabbit can
move to any vertex at once. The hunter’s purpose is to
catch the rabbit in as few steps as possible. On the other
hand, the rabbit considers a strategy that maximizes the
time until the hunter catch the rabbit. If the hunter moves
to a vertex that the rabbit is at, the game finishes and we
say that the hunter catches the rabbit.
The Hunter vs. Rabbit game model is used for analyz-

ing transmission procedures in mobile adhoc networks
[5,6]. Thismodel helps to send an electronicmessages effi-
ciently using mobile phones. The expected value of time
until the hunter catches the rabbit is equal to the expected
time until the recipient receives the mail. One of our goals
is to improve these procedures.
We introduce some games resembling the Hunter vs.

Rabbit game. The first one is the Princess vs. Mon-
ster game. In this game, the Monster tries to catch the
Princess in area D. The difference between the Hunter
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vs. Rabbit game is that the Monster catches the Princess
if the distance between the two players is smaller than
a chosen value. Also the Monster moves at a constant
speed whereas the Princess can move at any speed. This
game is played on a cycle graph as introduced by Isaacs
[10]. The Princess vs. Monster game has been investi-
gated by Alpern [3], Zelikin [20], and so on. Gal analyzed
the Princess-Monster game on a convexmultidimensional
domain [8].
The next one is the Deterministic pursuit-evasion game.

In this game we consider a runaway hide dark spot, for
example a tunnel. Parsons innovated the search number
of a graph [16,17]. The search number of a graph is the
least number of people that are required to catch a run-
away hiding dark spot moving at any speed. LaPaugh [12]
showed that if the runaway is known not to be in edge
e at any point of time, then the runaway can not enter
edge ewithout being caught in the remainder of the game.
Meggido showed that the computation time of the search
number of a graph is NP-hard [14]. If an edge can be
cleared without moving along it, but it suffices to ‘look
into’ an edge from a vertex, then the minimum number
of guards needed to catch the fugitive is called the node
search number of graph [11]. The pursuit evasion prob-
lem in the plane was introduced by Suzuki and Yamashita
[19]. They gave necessary and sufficient conditions for
a simple polygon to be searchable by a single pursuer.
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Later Guibas et al. [9] presented a complete algorithm
and showed that the problem of determining the min-
imal number of pursuers needed to clear a polygonal
region with holes is NP-hard. Park et al. [15] gave three
necessary and sufficient conditions for a polygon to be
searchable and showed that there is O(n2) time algorithm
for constructing a search path for an n-sided polygon.
Efrat et al. [7] gave a polynomial time algorithm for the
problem of clearing a simple polygonwith a chain of k pur-
suers when the first and last pursuer can only move on the
boundary of the polygon.
A first study of the Hunter vs. Rabbit game can be found

in [2]. The presented hunter strategy is based on random
walk on a graph and it is shown that the hunter catches
an unrestricted rabbit withinO(nm2) rounds, where n and
m denote the number of nodes and edges, respectively.
Adler et al. showed that if the hunter chooses a good strat-
egy, the upper bound of the expected time that the hunter
catches the rabbit is O(n log(diam(G))), where diam(G)

is a diameter of a graph G, and if the rabbit chooses a
good strategy, the lower bound of the expected time that
the hunter catches the rabbit is �(n log(diam(G))) [1].
Babichenko et al. showed Adler’s strategies yield a Kakeya
set consisting of 4n triangles with minimal area [4].
In this paper, we propose three assumptions for the

strategy of the rabbit. We have the general lower bound
formula for the probability that the hunter catches the rab-
bit. The strategy of the rabbit is formalized using a one
dimensional random walk over Z. We classify strategies
using the order O(k−β−1) of their Fourier transform. If
β = 1, the lower bound of a probability that the hunter
catches the rabbit is ((c∗π)−1 logN + c2)−1 where c2 and
c∗ are constants defined by the given strategy. If β ∈ (1, 2],
the lower bound of the probability that the hunter catches
the rabbit is c4N−(β−1)/β where c4 > 0 is are constant
defined by the given strategy.
We show experimental results for three examples of the

rabbit strategy.

1. P {X1 = k} =
{ 1

2a(|k|+1)(|k|+2) (k ∈ Z \ {0})
1 − 1

2a (k = 0)

2. P {X1 = k} =

⎧⎪⎨
⎪⎩

1
2a|k|β+1 (k ∈ Z \ {0})
1 − 1

a

∞∑
k=1

1
kβ+1 (k = 0)

3. P {X1 = k} =
{ 1

3 (k ∈ {−1, 0, 1})
0 (k �∈ {−1, 0, 1}).

We can confirm our bounds formula, and the asymptotic
behavior of those bounds by the results of simulations.

2 Statements of results
We consider the Hunter vs Rabbit game on a cycle graph.
To explain the Hunter vs Rabbit game, we introduce

some notation. Let X1,X2, . . . be independent, identically
distributed random variables defined on a probability
space (�,F ,P) taking values in the integer lattice Z. A
one-dimensional random walk {Sn}∞n=1 is defined by

Sn =
n∑

j=1
Xj.

Let Y1,Y2, . . . be independent, identically distributed
random variables defined on a probability space
(�H,FH,PH) taking values in the integer lattice Z with

PH{|Y1| ≤ 1} = 1.

Let N ∈ N be fixed. We denote by X(N)
0 a random vari-

able defined on a probability space (�N ,FN ,μN ) taking
values in VN := {0, 1, 2, . . . ,N − 1} with

μN
{
X(N)
0 = l

}
= 1

N
(l ∈ VN ).

For b ∈ Z, we denote by (b mod N) the remainder of b
divided by N .
A rabbit’s strategy

{
R(N)

n
}∞
n=0

is defined by

R(N)
0 = X(N)

0 and R(N)
n =

(
X(N)
0 + Sn mod N

)
.

R(N)
n indicates the position of the rabbit at time n on VN .

Hunter’s strategy
{
H(N)

n
}∞
n=0

is defined by

H(N)
0 = 0 and H(N)

n =
⎛
⎝ n∑

j=1
Yj mod N

⎞
⎠ .

H(N)
n indicates the position of the hunter at time n on VN .

Put

P
(N)
R = μN × P and P̃

(N) = PH × P
(N)
R .

The hunter catches the rabbit when the hunter and the
rabbit are both located on the same place.
We will discuss the probability that the hunter catches

the rabbit by time N on VN , that is,

P̃
(N)

( N⋃
n=1

{
H(N)

n = R(N)
n

})
.

We investigate the asymptotic estimate of this probability
as N → ∞.

Definition 1. We define conditions (A1), (A2) and (A3)
as follows.

(A1) The random walk {Sn}∞n=1 is strongly aperiodic, i.e.
for each y ∈ Z, the smallest subgroup containing the
set {

y + k ∈ Z | P {X1 = k} > 0
}

is Z.
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(A2) P {X1 = k} = P {X1 = −k} (k ∈ Z).
(A3) There exist β ∈ (0, 2], c∗ > 0 and ε > 0 such that

φ(θ) :=
∑
k∈Z

eiθkP {X1 = k} = 1 − c∗|θ |β + O
(|θ |β+ε

)
.

We denote the β in (A3) as βR.

Theorem 1. Assume that X1 satisfies (A1) − (A3).

(I) If βR ∈ (0, 1), then there exists a constant c1 > 0
such that for N ∈ N \ {1} and y1, y2, . . . , yN ∈ Z with
|yn − yn+1| ≤ 1 (n = 1, 2, . . . ,N − 1),

c1 ≤ P
(N)
R

( N⋃
n=1

{
R(N)

n = (yn mod N)
})

. (1)

(II) If βR = 1, then there exist constants c2 > 0 and
c3 > 0 such that for N ∈ N \ {1} and y1, y2, . . . ,
yN ∈ Z with |yn − yn+1| ≤ 1 (n = 1, 2, . . . ,N − 1),

1
1

c∗π logN + c2
≤ P

(N)
R

( N⋃
n=1

{
R(N)

n = (yn mod N)
})

≤ c3
logN

. (2)

(III) If βR ∈ (1, 2], then there exists a constant c4 > 0
such that for N ∈ N \ {1} and y1, y2, . . . , yN ∈ Z with
|yn − yn+1| ≤ 1 (n = 1, 2, . . . ,N − 1),

c4
N (β−1)/β ≤ P

(N)
R

( N⋃
n=1

{
R(N)

n = (yn mod N)
})

.(3)

The following bounds are obtained as a corollary of
Theorem 1.

Corollary 1. Assume (A1) − (A3).
If βR ∈ (0, 1), then there exists a constant c1 > 0 such

that for N ∈ N \ {1},

c1 ≤ P̃
(N)

( N⋃
n=1

{H(N)
n = R(N)

n }
)
.

If βR = 1, then there exist constants c2 > 0 and c3 > 0
such that for N ∈ N \ {1},

1
1

c∗π logN + c2
≤ P̃

(N)

( N⋃
n=1

{
H(N)

n = R(N)
n

})

≤ c3
logN

. (4)

If βR ∈ (1, 2], then there exists a constant c4 > 0 such
that for N ∈ N \ {1},

c4
N (β−1)/β ≤ P̃

(N)

( N⋃
n=1

{
H(N)

n = R(N)
n

})
.

Remark 1. Adler, Räcke, Sivadasan, Sohler and Vöcking
considered P̃

(N)
(
∪N
n=1

{
H(N)

n = R(N)
n

})
in the case of

P {X1 = k} =

⎧⎪⎨
⎪⎩

1
2(|k| + 1)(|k| + 2)

(k ∈ Z \ {0})
1
2

(k = 0).

In this case, X1 satisfies (A1), (A2) and

φ(θ) = 1 − π

2
|θ | + O(|θ |3/2)

((A3) with β = 1), and we have (4) in Corollary 1 which
coincides with the result of Lemma 3 in [1].

Remark 2. For β ∈ (0, 2), let

P {X1 = k} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2a|k|β+1 (k ∈ Z \ {0})

1 − 1
a

∞∑
k=1

1
kβ+1 (k = 0)

with a constant a satisfying a >
∑∞

k=1(1/kβ+1). Then
φ(θ) in (A3) is

φ(θ) = 1− π

2a
|θ |β

�(β + 1) sin(βπ/2)
+O

(
|θ |β+(2−β)/2

)
,

(5)

where � is the gamma function (see Appendix (B)). X1
satisfies (A1), (A2) and (5).
If X1 takes three values −1, 0, 1 with equal probability,

then X1 satisfies (A1), (A2) and

φ(θ) = 1 − 1
3
|θ |2 + O(|θ |4)

((A3) with β = 2).

The inequality (3) seems to be sharp, because the pow-
ers of upper and lower bound appearing in (3) cannot be
improved. Indeed, we have the following estimates.

Proposition 1. Let H(N)
i = 0 for any i and assume

(A1) − (A3). If βR ∈ (1, 2], then there exist constants
c5, c6 > 0 such that for N ∈ N,

c5
N (β−1)/β ≤ P

(N)
R

( N⋃
n=1

{
R(N)

n = 0
})

≤ c6
N (β−1)/β .

(6)

Proposition 2. Let H(N)
i = i for any i. If X1 takes three

values −1, 0, 1 with equal probability, then there exists a
constant c7 > 0 such that for N ∈ N,

c7 ≤ P
(N)
R

( N⋃
n=1

{
R(N)

n = (n mod N)
})

. (7)
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The proofs of Proposition 1 and Proposition 2 are given
in Appendix (A).

Remark 3. Assume (A1) and (A2). If there exist c∗ > 0
and ε > 0 such that

φ(θ) = 1 − c∗|θ | + O
(|θ |1+ε

)
((A3) with β = 1). Then

lim
N→∞

(
1

c∗π
logN

)
P

(N)
R

( N⋃
n=1

{
R(N)

n = 0
})

= 1. (8)

The proof of (8) is given in Appendix (C).

3 Computer simulation
In this section, we show some experimental results about
the Hunter vs Rabbit game on a cycle graph. We compute
P {Sn mod N = k} by using the gamma function and the
class discrete_distribution in C++. We can show
the probability the rabbit is caught and the expected value
of the time until the rabbit is caught using this application.
In this section, we consider a lower bound L(N , a) of the

probability that the hunter catches the rabbit. According
to the Proposition 3 and Proposition 6, we define L(N , a)
as follows:

L(N) = 1
1 + AN + BN + 1

1−ρ∗
where

AN =
{

22+ε−βπε−βC∗
c2∗

(β ∈ (0, 1] ),
2N (β−1)/β (β ∈ (1, 2))

and

BN =

⎧⎪⎪⎨
⎪⎪⎩

21−β

πβ c∗(1−β)
(β ∈ (0, 1)),

1
πc∗ logN + 1

πc∗ (β = 1),
22−β

c∗π

(
1 + 1

β−1

)
N (β−1)/β (β ∈ (1, 2)).

We note β and c∗ are defined by a given P{Xt = k} in an
example. We choose appropriate constants ε, ρ∗ and C∗
for each examples.

Example 1. We consider the generalization of the case
of [1]. Let

P {Xt = k} =

⎧⎪⎨
⎪⎩

1
2a(|k| + 1)(|k| + 2)

(k ∈ Z \ {0})
1 − 1

2a
(k = 0)

where a ≥ 1
2 . We note β = 1, c∗ = π and ε = 1/2 in

Remark 1. If a = 1, then this is the case in [1].
We can define C∗ and ρ∗ for this case. So we have

1∑N−1
i=0 p(N)

i
≥ L(N , 1) = 1

2
π2 logN + 7.45574

. (9)

The proof of (9) is given in Appendix (D).
Figure 1 shows an experimental result of the probabili-

ties for all initial positions of the rabbit with N = 100 and
a = 1. The horizontal axis is the initial position of the rab-
bit, and the vertical axis shows the probability the rabbit is
caught. The red line in the figure is a probability that the
hunter catches the rabbit. The blue line is the average of
probabilities that the hunter catches the rabbit. The green
line is L(N , a). In this case, the hunter does not move from
the initial position 0. As you can see, the average of the
probability that the hunter catches the rabbit is bounded
below by L(N , a).
In this case, the average of the probability that the

hunter catches the rabbit each initial position of the rabbit
nearly equals 0.4258, so we have

1
L(100, 1)

� 8.38894,

Figure 1 This is an experimental result of Example 1. In this case, a = 1. The hunter does not move from an initial position 0.
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and

1
L(100, 1)

P
(N)
R

( N⋃
n=1

{
R(N)

n = 0
})

� 3.1672.

Table 1 is the experimental results of Example 1 with
a = 1 and N = 100, 500 and 1000. This table shows the
asymptotic behavior of (8).

Example 2. We consider the case of β ∈ (0, 2). We put

P {Xt = k} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2a|k|β+1 (k ∈ Z \ {0})

1 − 1
a

∞∑
k=1

1
kβ+1 (k = 0)

where a>
∑∞

k=1
1

kβ+1 . By Remark 2, c∗ = π
2a�(β+1) sin(βπ/2)

and ε = 2−β
2 . Then, the lower bound of the probability

that the hunter catches the rabbit L(N , a) is

L(N , a)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1 + 21−β

(1−β)πβc∗ + 24−3β/2π1−3β/2c−1∗ C∗ + (1 − ρ∗)−1

(β ∈ (0, 1))
1

1 + 1+logN
πc∗ + 27/2π−1/2c−1∗ C∗ + (1 − ρ∗)−1

(β = 1)
1

1 + 2N (β−1)/β + 22−β(1+(β−1)−1)N (β−1)/β

c∗πβ + (1−ρ∗)−1

(β ∈ (1, 2))

where ρ∗ and C∗ are appropriate constants for each exam-
ples. When a = 2.5 and β = 1, we set C∗ � 0.177245 and
ρ∗ � 0.694811. So we have

L(N , 2.5) = 1
5
π2 logN + 4.65936

.

Figure 2 is an experimental result with β = 1, N = 100
and a = 2.5. In this case, the average of the probability
that the hunter catches the rabbit nearly equals 0.318, so
we have

1
L(100, 2.5)

� 6.99237,

Table 1 This table is experimental results of Example 1
with a = 1 and N = 100, 500 and 1000

N 1/L(N, a) A A/L(N, a)

100 8.38894 0.4258 3.57201

500 8.71508 0.39048 3.40307

1000 8.85554 0.37555 3.3257

A is the average of the probability that the hunter catches the rabbit.

and

1
L(100, 2)

P
(N)
R

( N⋃
n=1

{
R(N)

n = 0
})

� 2.22357.

Table 2 is the experimental results of Example 2 with
β = 1, a = 2.5 and N = 100, 500 and 1000. This table
shows that the value of A/L(N , a)(> 1) is decreasing.

Example 3. We put

P {Xt = k} =
{ 1

3
(k ∈ {−1, 0, 1})

0 (k �∈ {−1, 0, 1}).
By Remark 2, β = 2, c∗ = 1

3 and ε = 2. In this case,
the lower bound of the probability the hunter catches the
rabbit L′(N) is

L′(N) = 1(
1 + 6

π2

)
N1/2 + 4.26301

.

(We can prove this using in the same way in Appendix
(D).) Figure 3 is an experimental result of Example 3. The
green line in Fig. 3 is L′(N).

We could have a concrete lower bound of the average of
a probability that the hunter catches the rabbit for those
examples.

4 Upper bounds and lower bounds
In this section, we give a relation between

P
(N)
R

( N⋃
n=1

{
R(N)

n = (yn mod N)
})

and one-dimensional random walk {Sn}∞n=1.

Proposition 3. For N ∈ N \ {1} and y1, y2, . . . , yN ∈ Z

with |yn − yn+1| ≤ 1 (n = 1, 2, . . . ,N − 1),

1∑N−1
i=0 p(N)

i
≤ P

(N)
R

( N⋃
n=1

{
R(N)

n = (yn mod N)
})

≤ 2∑N−1
i=0 q(N)

i
, (10)

where

[ y]N = {
y + kN | k ∈ Z

}
,

p(N)
i =

{
1 (i = 0)
max

|y|≤i, y∈Z
P
{
Si ∈[ y]N

}
(i ∈ N)

and

q(N)
i =

{
1 (i = 0)
min

|y|≤i, y∈Z
P
{
Si ∈[ y]N

}
(i ∈ N).
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Figure 2 This is an experimental result of Example 2. In this case, a = 2.5. The hunter does not move from an initial position 0.

Proof. We note that

N⋃
n=1

{
R(N)

n = (yn mod N)
}

=
N−1⋃
l=0

N⋃
n=1

{
X(N)
0 = l, l + Sn ∈[ yn]N

}

=
N−1⋃
l=0

N⋃
n=1

{
X(N)
0 = l, l + Sn ∈[ yn]N ,

l + Si /∈[ yi]N , 1 ≤ i ≤ n − 1

}

by the definition of
{
R(N)

n
}∞
n=0

. By P
(N)
R = μN × P, the

above relation implies

P
(N)
R

( N⋃
n=1

{
R(N)

n = (yn mod N)
})

=
N−1∑
l=0

N∑
n=1

1
N
P
{
l + Si /∈[ yi]N , 1 ≤ i ≤ n − 1,
l + Sn ∈[ yn]N

}
.

(11)

For l ∈ {0, 1, . . . ,N−1} and n ∈ {2, 3, . . . ,N}, we decom-
pose the event {l + Sn ∈[ yn]N } according to the value of
the first hitting time for [ y1]N , [ y2]N , . . . , [ yn]N and the
hitting place to obtain

Table 2 This table is experimental results of Example 2
with β = 1, a = 2.5 and N = 100, 500 and 1000

N 1/L(N, a) A A/L(N, a)

100 6.99237 0.318 2.22357

500 7.80772 0.25924 2.02407

1000 8.15887 0.24015 1.95935

A is the average of the probability that the hunter catches the rabbit.

P{l + Sn ∈[ yn]N }

=
n∑

j=1

∑
m∈Z

P

⎧⎨
⎩
l + Si /∈[ yi]N , 1 ≤ i ≤ j − 1,
l + Sj = yj + mN ,
yj + mN + Xj+1+ · · · + Xn ∈[ yn]N

⎫⎬
⎭.

The probability in the double summation on the right-
hand side above is equal to

P
{
l + Si /∈[ yi]N , 1 ≤ i ≤ j − 1,
l + Sj = yj + mN ,

}
×P

{
yj + mN + Sn−j ∈[ yn]N

}

by the Markov property. It is easy to verify that for any
m ∈ Z,

P
{
yj + mN + Sn−j ∈[ yn]N

}
= P

{
Sn−j ∈[ yn − yj]N

} ≤ p(N)
n−j

by |yn − yj| ≤ n − j. Therefore

P
{
l + Sn ∈[ yn]N

}
≤

n∑
j=1

P
{
l + Si /∈[ yi]N , 1 ≤ i ≤ j − 1,
l + Sj =[ yj]N

}
p(N)
n−j,

(12)

for l ∈ {0, 1, . . . ,N − 1} and n ∈ {1, 2, . . . ,N}. By multi-
plying (12) by 1/N and summing (l, n) over {0, 1, . . . ,N −
1} × {1, 2, . . . ,N}, we have
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Figure 3 This is an experimental result of Example 3. The hunter does not move from an initial position 0.

N−1∑
l=0

N∑
n=1

1
N
P
{
l + Sn ∈[ yn]N

}

≤
N−1∑
l=0

N∑
j=1

1
N
P
{
l + Si /∈[ yi]N , 1 ≤ i ≤ j − 1,
l + Sj =[ yj]N

}

×
⎛
⎝N−j∑

i=0
p(N)
i

⎞
⎠

≤ P
(N)
R

( N⋃
n=1

{
R(N)

n = (yn mod N)
})(N−1∑

i=0
p(N)
i

)
. (13)

Here we used (11).
By

∑N−1
l=0 P{l+Sn∈[y]N } = P{Sn ∈ Z}= 1(n ∈ N, y ∈ Z),

N−1∑
l=0

N∑
n=1

1
N
P{l + Sn ∈[ yn]N } = 1. (14)

(13) and (14) imply

1 ≤ P
(N)
R

( N⋃
n=1

{
R(N)

n = (yn mod N)
})(N−1∑

i=0
p(N)
i

)

(15)

that is the first inequality in (10).
For the last inequality in (10), let yN+j = yN (j =

1, 2, . . . ,N). The same argument as showing (15) (we use
q(N)
i instead of p(N)

i ) gives

2 =
N−1∑
l=0

2N∑
n=1

1
N
P{l + Sn ∈[ yn]N }

≥ P
(N)
R

( N⋃
n=1

{
R(N)

n = (yn mod N)
})(N−1∑

i=0
q(N)
i

)
.

Corollary 2. For N ∈ N \ {1},

1
1 + ∑N−1

i=1 P{Si ∈[ 0]N } ≤ P
(N)
R

( N⋃
n=1

{
R(N)

n = 0
})

≤ 2
1 + ∑N−1

i=1 P{Si ∈[ 0]N } . (16)

Proof. Put y1 = y2 = · · · = y2N = 0 in the proof of
Proposition 3. Then the same argument as showing (10)
gives (16).

Corollary 3. For N ∈ N \ {1},
1

1 + ∑N−1
i=1 P{Si ∈[ i]N }

≤ P
(N)
R

( N⋃
n=1

{
R(N)

n = (n mod N)
})

≤ 2
1 + ∑N−1

i=1 P{Si ∈[ i]N } . (17)

Proof. Put yj = j (j = 1, 2, . . . , 2N) in the proof of Propo-
sition 3. Then the same argument as showing (10) gives
(17).

Remark 4. By the same argument as showing (16), we
obtain that for ε̃ > 0 and N ≥ 1/ε̃,

P
(N)
R

( N⋃
n=1

{
R(N)

n = 0
})

≤ 1 + ε̃

1 + ∑ε̃N
i=1 P{Si ∈[ 0]N } .

5 Fourier transform
In this section, we introduce some results concerning one-
dimensional random walk.
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Proposition 4. If a one-dimensional random walk sat-
isfies (A1) and (A3), then there exist C1 > 0 and N1 ∈ N

such that for n ≥ N1,

sup
l∈Z

∣∣∣∣n1/βP{Sn = l} − 1
2π

∫ +∞

−∞
e−c∗|x|β exp

(
−i

xl
n1/β

)
dx
∣∣∣∣

≤ C1n−δ ,

where δ = min{ε/(2β), 1/2}.

Proof. Proposition 4 can be proved by the same proce-
dure as in Theorem 1.2.1 of [13].
The Fourier inversion formula for φn(θ) is

n1/βP{Sn = l} = n1/β

2π

∫ π

−π

φn(θ)e−iθ l dθ . (18)

By (A3), there exist C∗ > 0 and r ∈ (0,π) such that for
|θ | < r,

|φ(θ) − (
1 − c∗|θ |β) | ≤ C∗|θ |β+ε (19)

and

|φ(θ)| ≤ 1 − c∗
2

|θ |β . (20)

With r, we decompose the right-hand side of (18) to obtain

n1/βP{Sn = l} = I(n, l) + J(n, l),

where

I(n, l) = n1/β

2π

∫
|θ |<r

φn(θ)e−iθ l dθ ,

J(n, l) = n1/β

2π

∫
r≤|θ |≤π

φn(θ)e−iθ l dθ .

A strongly aperiodic random walk (A1) has the prop-
erty that |φ(θ)| = 1 only when θ is a multiple of 2π
(see § 7 Proposition 8 of [18]). By the definition of φ(θ),
|φ(θ)| is a continuous function on the bounded closed set
[−π ,−r]∪[ r,π ], and |φ(θ)| ≤ 1 (θ ∈[−π ,π ]). Hence,
there exists a ρ < 1, depending on r ∈ (0,π ], such that

max
r≤|θ |≤π

|φ(θ)| ≤ ρ. (21)

By using the above inequality,

|J(n, l)| ≤ n1/β

2π

∫
r≤|θ |≤π

|φ(θ)|n dθ ≤ n1/βρn.

We perform the change of variables θ = x/n1/β , so that

I(n, l) = 1
2π

∫
|x|<rn1/β

φn
( x
n1/β

)
exp

(
−i

xl
n1/β

)
dx.

Put

γ = min
{

ε

2β(β + ε + 1)
,

1
2(2β + 1)

}
.

We decompose I(n, l) as follows:

I(n, l) = 1
2π

∫ +∞

−∞
e−c∗|x|β exp

(
−i

xl
n1/β

)
dx

+I1(n, l) + I2(n, l) + I3(n, l),

where

I1(n, l) = 1
2π

∫
|x|≤nγ

{
φn

( x
n1/β

)
− e−c∗|x|β

}

× exp
(

−i
xl

n1/β

)
dx,

I2(n, l) = − 1
2π

∫
nγ <|x|

e−c∗|x|β exp
(

−i
xl

n1/β

)
dx

and

I3(n, l)= 1
2π

∫
nγ <|x|<rn1/β

φn
( x
n1/β

)
exp

(
−i

xl
n1/β

)
dx.

Therefore,∣∣∣∣n1/βP{Sn = l} − 1
2π

∫ ∞

−∞
e−c∗|x|β exp

(
−i

xl
n1/β

)
dx
∣∣∣∣

≤ |J(n, l)| +
3∑

k=1
|Ik(n, l)|.

The proof of Proposition 4 will be complete if we show
that each term in the right-hand side of the above inequal-
ity is bounded by a constant (independent of l) multiple of
n−δ .
If n is large enough, then the bound |J(n, l)| ≤ n1/βρn,

which has already been shown above, yields

|J(n, l)| ≤ n−δ .

With the help of

|an − bn| = |a − b|
∣∣∣∣∣∣
n−1∑
j=0

an−1−jbj
∣∣∣∣∣∣

≤ n|a − b| (a, b ∈[−1, 1] ) (22)

and |φ(θ)| ≤ 1 (θ ∈[−π ,π ] ), (19) implies that for |x| <

rn1/β ,∣∣∣φn
( x
n1/β

)
− e−c∗|x|β

∣∣∣ ≤ n
∣∣∣φ ( x

n1/β
)

− e−c∗|x|β/n
∣∣∣

≤ n
∣∣∣∣φ ( x

n1/β
)

−
(
1 − c∗

|x|β
n

)∣∣∣∣
+n

∣∣∣∣
(
1 − c∗

|x|β
n

)
− e−c∗|x|β/n

∣∣∣∣
≤ C∗|x|β+εn−ε/β + c2∗

2
|x|2βn−1.

Thus

|I1(n, l)| ≤ 1
2π

∫
|x|≤nγ

∣∣∣φn
( x
n1/β

)
− e−c∗|x|β

∣∣∣ dθ

≤ 1
π

(
C∗

β + ε + 1
+ c2∗

2(2β + 1)

)
n−δ .
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It is easy to verify that for |x| < rn1/β ,∣∣∣φn
( x
n1/β

)∣∣∣ ≤
(
1 − c∗

2
|x|β
n

)n
≤ e−c∗|x|β/2

by (20), and we obtain that

|I3(n, l)| ≤ 1
2π

∫
nγ <|x|<rn1/β

∣∣∣φn
( x
n1/β

)∣∣∣ dx
≤ 1

2π

∫
nγ <|x|

e−c∗|x|β/2 dx. (23)

Moreover, if n is large enough, then

e−c∗|x|β/2 ≤ 2s

cs∗
|x|−sβ (|x| > nγ ),

where s = (1/β)(1 + 1/(2γ )). By replacing the integrand
in the right-hand side of the last inequality of (23) with the
right-hand side of the above inequality, we obtain

|I3(n, l)| ≤ 2s+1γ

πcs∗
n−1/2 ≤ 2s+1γ

πcs∗
n−δ . (24)

The same argument as showing (24) gives

|I2(n, l)| ≤ 1
2π

∫
nγ ≤|θ |

e−c∗|x|β dx ≤ 2s+1γ

πcs∗
n−δ .

Let

I0(n, l : β , c∗) = 1
2π

∫ +∞

−∞
e−c∗|x|β exp

(
−i

xl
n1/β

)
dx

appearing in Proposition 4.

Remark 5. When a one-dimensional random walk
is the strongly aperiodic (A1) with E[X1]= 0 and
E
[|X1|2+ε

]
< ∞ for some ε ∈ (0, 1), it is verified that

φ(θ) = 1 − E[X2
1 ]

2
|θ |2 + O

(|θ |2+ε
)
.

In this case, I0(n, l : 2,E
[
X2
1
]
/2) can be computed and

Proposition 4 gives the following.
(Local Central Limit Theorem)There exist C̃1 > 0 and

Ñ1 ∈ N such that for n ≥ Ñ1,

sup
l∈Z

∣∣∣∣∣∣∣n
1/2P{Sn = l} − 1√

2E[X2
1 ]π

exp
(

− l2

2E[X2
1 ] n

)∣∣∣∣∣∣∣
≤ C̃1n−δ ,

(25)

where δ = min{ε/4, 1/2}. (See Remark after Proposition
7.9 in [18].)
It is easy to see

I0(n, l : 1, c∗) = 1
π

c∗
c2∗ + (l/n)2

(n ∈ N, l ∈ Z, c∗ > 0)

and we have the following corollary of Proposition 4.

Corollary 4. If a one-dimensional randomwalk satisfies
(A1) and (A3) with β = 1, then there exist C2 > 0 and
N2 ∈ N such that for n ≥ N2,

sup
l∈Z

∣∣∣∣nP{Sn = l} − 1
π

c∗
c2∗ + (l/n)2

∣∣∣∣ ≤ C2n−δ ,

where δ = min{ε/2, 1/2}.

We perform the change of variables t = c∗xβ , so that

I0(n, 0 : β , c∗) = 1
π

∫ +∞

0
e−c∗xβ

dx = 1
βc1/β∗ π

�

(
1
β

)
.

With the help of the above calculation, Proposition 4
gives the following corollary.

Corollary 5. If a one-dimensional randomwalk satisfies
(A1) and (A3), then there exist C3 > 0 and N3 ∈ N such
that for n ≥ N3,∣∣∣∣∣n1/βP{Sn = 0} − 1

βc1/β∗ π
�

(
1
β

)∣∣∣∣∣ ≤ C3n−δ ,

where δ = min{ε/2β , 1/2}.

Proposition 5. If a one-dimensional random walk sat-
isfies (A2), then for l ∈ Z and n ∈ {0} ∪ N,

P {Sn ∈[ l]N }
= 1

N
+ 2

N
∑

1≤j≤(N−1)/2
φn

(
2jπ
N

)
cos

(
2jπ
N

l
)

+ JN (n, l),

(26)

where

JN (n, l) =
{

(1/N)φn(π) cos(π l) (if N is even)

0 (if N is odd).

Proof. By the definition of φ(θ),

φn(θ) =
∑
k∈Z

eiθkP {Sn = k} .

Thus

φn
(
2jπ
N

)
=

∑
k∈Z

e2ijπk/NP {Sn = k}

=
N−1∑
l̃=0

∑
m∈Z

e2ijπ(l̃+mN)/NP
{
Sn = l̃ + mN

}

=
N−1∑
l̃=0

e2ijπ l̃/NP
{
Sn ∈[ l̃]N

}
.
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Then,
N−1∑
j=0

e−2ijπ l/Nφn
(
2jπ
N

)
=

N−1∑
l̃=0

N−1∑
j=0

e2ijπ(l̃−l)/NP
{
Sn ∈[ l̃]N

}

= NP {Sn ∈[ l]N }
since

N−1∑
j=0

e2ijπ(l̃−l)/N =
{
N l̃ = l
0 l̃ �= l

.

Therefore,

P {Sn ∈[ l]N } = 1
N

N−1∑
j=0

φn
(
2jπ
N

)
e−2jπ il/N

= 1
N

N−1∑
j=0

φn
(
2jπ
N

)
cos

(
2jπ l
N

)
.

We note that φn(θ) ∈ R and

1
N

N−1∑
j=0

φn
(
2jπ
N

)
cos

(
2jπ l
N

)
∈ R

by (A2). So we have

φn
(
2mπ

N

)
cos

(
2mπ l
N

)

= φn
(
2(N − m)π

N

)
cos

(
2(N − m)π l

N

)
. (27)

Let N be an even number. Then, by (27),

P {Sn ∈[ l]N }
= 1

N
φn (0) cos (0)

+ 2
N

∑
1≤j≤(N−1)/2

φn
(
2jπ
N

)
cos

(
2jπ l
N

)

+ 1
N

φn (π) cos (π l)

= 1
N

+ 2
N

∑
1≤j≤(N−1)/2

φn
(
2jπ
N

)
cos

(
2jπ l
N

)

+ 1
N

φn (π) cos (π l) .

Therefore, we have (26) for every even number N . The
proof of (26) for odd number is similar and is omitted.

6 Proof of Theorem 1
In this section we prove Theorem 1. To prove it, we
introduce the following Proposition.

Proposition 6. Assume (A1), (A2) and (A3).

If β ∈ (0, 1), then there exists a constant c8 > 0 such
that

N−1∑
i=0

p(N)
i ≤ c8. (28)

If β = 1, then there exists a constant c9 > 0 such that
N−1∑
i=0

p(N)
i ≤ 1

c∗π
logN + c9. (29)

If β ∈ (1, 2], then there exists a constant c10 > 0 such
that

N−1∑
i=0

p(N)
i ≤ c10N (β−1)/β . (30)

Proof. There existC∗ and r ∈ (0,π) such that for |θ | < r,

|φ(θ) − (
1 − c∗|θ |β) | ≤ C∗|θ |β+ε (31)

by (A3). We can choose r∗ ∈ (0, r] small enough so that

C∗rε∗ ≤ 1
2
c∗ and c∗rβ∗ ≤ 1

3
. (32)

Then for |θ | < r∗,
1
2
c∗|θ |β ≤ |1 − φ(θ)| (33)

and

|1 − φ(θ)| ≤ 3
2
c∗|θ |β ≤ 1

2
. (34)

There exists a ρ∗ ∈[ 0, 1), depending on r∗, such that

max
r∗≤|θ |≤π

|φ(θ)| ≤ ρ∗ (35)

by the same reason as (21). (Here we used the condition
(A1).)
Using Proposition 5 and (35), we obtain that for i ∈

{1, 2, . . . ,N − 1},
p(N)
i = max

|l|≤i
P {Si ∈[ l]N }

≤ 1
N

+
∑

1≤j≤(N−1)/2

2
N

∣∣∣∣φ
(
2jπ
N

)∣∣∣∣
i
+ |JN (i, 0)|

≤ 1
N

+
∑

1≤j<(r∗/(2π))N

2
N

∣∣∣∣φ
(
2jπ
N

)∣∣∣∣
i
+ ρi∗.

Therefore
N−1∑
i=0

p(N)
i ≤ 1 + N + 1

1 − ρ∗
, (36)

where

N =
∑

1≤j<(r∗/(2π))N

2
N

1 −
∣∣∣φ (

2jπ
N

)∣∣∣N
1 −

∣∣∣φ (
2jπ
N

)∣∣∣ .
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Because of (A2), φ(θ) takes a real number. Then (33),
(34) and (A1) mean that

1
2

< φ(θ) = |φ(θ)| < 1 (θ ∈ (−r∗, 0) ∪ (0, r∗)) (37)

and

N ≤
∑

1≤j<(r∗/(2π))N

2
N

1

1 − φ
(
2jπ
N

) . (38)

We will calculate N in the case β ∈ (0, 1]. By (38), we
decompose the right-hand side of the above to obtain∑

1≤j<(r∗/(2π))N

2
N

1

1 − φ
(
2jπ
N

) = ̃N + EN , (39)

where

̃N = 21−β

πβc∗
Nβ−1

∑
1≤j<(r∗/(2π))N

j−β ,

EN =
∑

1≤j<(r∗/(2π))N

2
N

⎛
⎜⎝ 1

1 − φ
(
2jπ
N

) − 1

c∗
(
2jπ
N

)β

⎞
⎟⎠ .

To estimate EN , we use (31) and (33) which imply that
for j ∈[ 1, (r∗/(2π))N) ∩ Z,

2
N

∣∣∣∣∣∣∣
1

1 − φ
(
2jπ
N

) − 1

c∗
(
2jπ
N

)β

∣∣∣∣∣∣∣

= 2
N

∣∣∣∣1 − φ
(
2jπ
N

)
− c∗

(
2jπ
N

)β
∣∣∣∣∣∣∣1 − φ

(
2jπ
N

)∣∣∣ · ∣∣∣∣c∗ ( 2jπ
N

)β
∣∣∣∣

≤ c11Nβ−ε−1jε−β ,

where c11 = 22+ε−βπε−βC∗/c2∗. By noticing that 1 + ε −
β > 0, ∑

1≤j<(r∗/(2π))N
jε−β ≤

∫ N

0
xε−β dx = N1+ε−β

1 + ε − β
.

Thus

|EN | ≤ c11/(1 + ε − β). (40)

It is easy to see that

̃N ≤ 21−β

πβc∗
Nβ−1

(
1 +

∫ N

1
x−β dx

)

≤

⎧⎪⎪⎨
⎪⎪⎩

21−β

πβc∗(1 − β)
(β ∈ (0, 1))

1
πc∗

logN + 1
πc∗

(β = 1).
(41)

Put the pieces ((36), (38)-(41)) together, we have (28) and
(29).
In the case β ∈ (1, 2], we use (37) to obtain

N ≤ 
(1)
N + 

(2)
N , (42)

where N(β) = min
{
N (β−1)/β , (r∗/(2π))N

}
and


(1)
N =

∑
1≤j<N(β)

2
N

∣∣∣∣1 − φ
(
2jπ
N

)N ∣∣∣∣∣∣∣1 − φ
(
2jπ
N

)∣∣∣ ,


(2)
N =

∑
N(β)≤j<(r∗/(2π))N

2
N

1∣∣∣1 − φ
(
2jπ
N

)∣∣∣ .
We use (22) (set n = N and a = 1, b = φ

(
2jπ
N

)
), then


(1)
N ≤ 2N(β) ≤ 2N (β−1)/β . (43)

We notice that β − 1 > 0, (33) gives


(2)
N ≤ 22−β

c∗πβ
Nβ−1

⎛
⎝ ∑

N(β)≤j<(r∗/(2π))N
j−β

⎞
⎠

≤ 22−β

c∗πβ
Nβ−1

(
N−β+1 +

∫ +∞

N (β−1)/β
x−β dx

)

≤ 22−β

c∗πβ

(
1 + 1

β − 1

)
N (β−1)/β . (44)

Put the pieces ((36), (42)-(44)) together, we have (30).

It remains to show the last inequality in (2). To achieve
this, we will use Proposition 3 and Corollary 4.
There exist C2 > 0 and N2 ∈ N such that for i ≥ N2 and

l ∈ Z,

P{Si = l} ≥ 1
π

c∗
c2∗ + (l/i)2

1
i

− C2i−1−δ

by Corollary 4. Let

c12 := 1
π

c∗
c2∗ + 1

logN2 + C2

∞∑
i=N2

i−1−δ .

We can choose N∗ ∈ N large enough so that
1
2
1
π

c∗
c2∗ + 1

logN∗ ≥ c12.

Then for N ≥ N∗ + 1,
N−1∑
i=0

q(N)
i ≥

N−1∑
i=N2

min
|l|≤i

P{Si = l}

≥ 1
π

c∗
c2∗ + 1

N−1∑
i=N2

1
i

− C2

∞∑
i=N2

i−1−δ

≥ 1
π

c∗
c2∗ + 1

logN − c12

≥ 1
2
1
π

c∗
c2∗ + 1

logN . (45)

It follows from Proposition 3 and (45) that forN ∈[N∗+
1,+∞)∩N and y1, y2, . . . , yN ∈ Zwith |yn−yn+1| ≤ 1 (n =
1, 2, . . . ,N − 1),
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P
(N)
R

( N⋃
n=1

{
R(N)

n = (yn mod N)
})

≤
4π(c2∗+1)

c∗
logN

.

It is clear that P(N)
R

(⋃N
n=1

{
R(N)

n = (yn mod N)
})

is
bounded by 1. Put c3 = max

{
4π(c2∗ + 1)/c∗, logN∗

}
. The

last inequality in (2) holds.
The proof of Theorem 1 is complete.

7 Conclusion and future works
We formalized the Hunter vs Rabbit game using the ran-
dom walk framework. We generalize a probability distri-
bution of the rabbit’s strategy using four assumptions. We
have the general lower bound formula of a probability
that the rabbit is caught. Let P {X1 = k} = O(k−β−1). If
β ∈ (0, 1), the lower bound of a probability that the hunter
catches the rabbit is c1 where c1 > 0 is a constant. If β = 1,
the lower bound of a probability that the rabbit is caught
is 1

1
c∗π

logN+c2
where c2 and c∗ are constants defined by the

given strategy. If β ∈ (1, 2], the lower bound of a proba-
bility that the rabbit is caught is c4

N (β−1)/β where c4 > 0 is a
constant defined by the given strategy.
We show experimental results for three examples of the

rabbit strategies. We can confirm our bounds formula,
and asymptotic behavior of those bounds

lim
N→∞

(
1

c∗π
logN

)
P

(N)
R

( N⋃
n=1

{
R(N)

n = 0
})

= 1.

In this paper, we consider the lower bound of a proba-
bility that the rabbit is caught to show the worst expected
value of time until the rabbit caught. Our motivation is to
find the best strategy of the rabbit. Our results help to find
the best strategy of the rabbit. On the other hands, what
is the best strategy of the hunter? And what is the worst
strategy of the hunter? Future works include to show the
best strategy of the hunter is Yj+1 = Yj + 1, and the worst
strategy of the hunter is Yj = H(N)

0 for any j.

Appendix
A Proof of Proposition 1
The first inequality in (6) comes from (3) in Theorem 1.
To prove the last inequality in (6), we will use Corollary 2
and 5 instead of Proposition 3 and Corollary 4. The same
argument as showing the last inequality in (3) gives the
last inequality in (6).

B Proof of Proposition 2
We consider the case when X1 takes three values −1, 0, 1
with equal probability. In this case, X1 satisfies (A1), (A2)
and

φ(θ) = 1 − 1
3
|θ |2 + O

(|θ |4) .

We can show that there exist C̃1 > 0 and Ñ1 ∈ N such
that for i ≥ Ñ1 and l ∈ Z,

P{Si = l} ≤
√
3

2
√

π

1
i1/2

exp
(

−3l2

4i

)
+ C̃1i−1 (46)

by (25). We notice that P{|X1| ≤ 1} = 1, then we obtain
that for N ∈ N \ {1},

1 +
N−1∑
i=1

P{Si ∈[ i]N }

= 1 +
N−1∑
i=1

P{Si = i} +
∑

N/2≤i≤N−1
P{Si = i − N}

and
N−1∑
i=1

P{Si = i} =
N−1∑
i=1

(
1
3

)i
≤ 1

2
.

With the help of e−x ≤ 1/x (x > 0), (46) implies that for
N ≥ 2Ñ1,∑
N/2≤k≤N−1

P{Sk = k − N}

≤
∑

N/2≤k≤N−1

{ √
3

2
√

π

1
k1/2

exp
(

−3(k − N)2

4k

)
+ C̃1k−1

}

≤
√

3
2π

1
N1/2

∑
1≤k≤N/2

exp
(

−3k2

4N

)
+ C̃1

∑
1≤k≤N/2

2
N

≤
√

3
2π

1
N1/2

⎛
⎝ ∑

1≤k≤N1/2

1 +
∑

N1/2<k

4N
3k2

⎞
⎠ + 2C̃1

≤
√

3
2π

+ 2
√
2√

3π
N1/2

(
1
N

+
∫ +∞

N1/2

1
x2

dx
)

+ 2C̃1

≤ c13,

where c13 = √
3/(2π) + 4

√
2/

√
3π + 2C̃1. Thus for N ∈

N \ {1},

1 +
N−1∑
i=1

P{Si ∈[ i]N } ≤ max{2Ñ1, (3/2) + c13}.

Combining the above inequality with Corollary 3, we
have (7).
(B) To obtain (5), we use the formula∫ +∞

0

sin bx
xα

dx = πbα−1

2�(α) sin(απ/2)
(47)

for α ∈ (0, 2) and b > 0. By the definition of X1,

1 − φ(θ) = 1
a

∞∑
k=1

(1 − cos |θ |k) 1
kβ+1 .
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A simple calculation shows that the absolute value of the
difference between the right-hand side of the above and

1
a

∫ +∞

0

1 − cos |θ |x
xβ+1 dx

is bounded by a constant multiple of |θ |β+(2−β)/2. It
remains to show that

1
a

∫ +∞

0

1 − cos |θ |x
xβ+1 dx = π

2a
|θ |β

�(β + 1) sin(βπ/2)
.

(48)

We perform integration by part for the left-hand side of
(48) and use (47). Then we have (48) and (5).

C Proof of (8)
Let ε > 0 be fixed. By Corollary 4, there exist C2 > 0 and
N2 ∈ N such that for i ≥ N2,

P{Si = 0} ≥ 1
c∗π

1
i

− C2i−1−δ . (49)

(49) implies that for N ≥ (4/ε)(N2 + 1),

1 +
∑

1≤i≤(ε/4)N
P{Si ∈[ 0]N } ≥

∑
N2≤i≤(ε/4)N

P{Si = 0}

≥
∑

N2≤i≤(ε/4)N

(
1

c∗π
1
i

− C2i−1−δ

)

≥ 1
c∗π

∫ (ε/4)N

N2

1
x
dx − C2

(
1

N1+δ
2

+
∫ +∞

N2
x−1−δ dx

)

= 1
c∗π

logN + 1
c∗π

log ε − c14, (50)

where c14 = (1/(c∗π)) log 4 + (1/(c∗π)) logN2 +
C2

{
1/N1+δ

2 + 1/(δNδ
2 )
}
.

We can choose N4 ∈ N which satisfies

min
{
1
2
,
ε

8

}
1

c∗π
logN4 ≥

∣∣∣∣− 1
c∗π

log ε + c14
∣∣∣∣ (51)

and
ε

4
1

c∗π
logN4 ≥ c2, (52)

where c2 is the same constant in (2).
Combining Remark 5 with (50) and using the left-hand

side of (2), we obtain that forN ≥ max{N4, (4/ε)(N2+1)},
1

1
c∗π logN + c2

≤ P
(N)
R

( N⋃
n=1

{
R(N)

n = 0
})

≤ 1 + (ε/4)
1

c∗π logN + 1
c∗π log ε − c14

.

Hence for N ≥ max{N4, (4/ε)(N2 + 1)},∣∣∣∣∣
(

1
c∗π

logN
)
P

(N)
R

( N⋃
n=1

{
R(N)

n = 0
})

− 1

∣∣∣∣∣

≤ E(1)
N + E(2)

N ,

where

E(1)
N =

∣∣∣∣∣
1

c∗π logN
1

c∗π logN + c2
− 1

∣∣∣∣∣
and

E(2)
N =

∣∣∣∣∣
(1 + (ε/4)) 1

c∗π logN
1

c∗π logN + 1
c∗π log ε − c14

− 1

∣∣∣∣∣ .
The proof is complete if we show that for

N ≥ max{N4, (4/ε)(N2 + 1)},
E(1)
N + E(2)

N ≤ ε. (53)

We use (52), then

E(1)
N ≤ c2

1
c∗π logN

≤ ε

4

for N ≥ max{N4, (4/ε)(N2 + 1)}. We can show that

E(2)
N ≤

(ε/4) 1
c∗π logN +

∣∣∣− 1
c∗π log ε + c14

∣∣∣
1

c∗π logN −
∣∣∣− 1

c∗π log ε + c14
∣∣∣

≤ ε

2
+

∣∣∣− 1
c∗π log ε + c14

∣∣∣
(1/2) 1

c∗π logN
≤ 3ε

4

for N ≥ max {N4, (4/ε)(N2 + 1)} by (51). The above two
inequalities yield (53).

D Proof of (9)
We show the lower bound of Example 1. In this case, a =
1, β = 1, c∗ = π

2a and ε = 1
2 . We have |EN | = 2c11 by (40).

We note

c11 = 22+ε−βπε−βC∗
c2∗

= 27/2π−5/2C∗.

We can choose C∗ = 1.225 by (31). So we have

|EN | ≤ c11/(1 + ε − β) � 1.58452.

We have

̃N ≤ 2
π2 logN + 2

π2

by (41). So we can show that
N−1∑
i=0

p(N)
i ≤ 1 + ̃N + |EN | + 1

1 − ρ∗

≤ 1 + 2a
π2 logN + 2

π2 + 1.58452 + 1
1 − ρ∗

by (36), (38) and (39). So we have
1∑N−1

i=0 p(N)
i

≥ 1
1 + 2

π2 logN + 2
π2 + 1.58452 + 1

1−ρ∗
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by Proposition 3. It is easily to check r∗ � 0.212207 (by
(32)) andmaxr∗≤|θ |≤π |φ(θ)| ≤ 0.785802, then we set ρ∗ =
0.785802. Then,

1∑N−1
i=0 p(N)

i
≥ 1

2
π2 logN + 7.45574

.

So we have (9).
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