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Exact computation for meeting times and
infection times of randomwalks on graphs
Takuya Ohwa

Abstract

We consider independent multiple random walks on graphs and study comparison results of meeting times and
infection times between many conditions of the random walks by obtaining the exact density functions or
expectations.
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1 Introduction
Let G = (V ,E) be a finite connected graph and
X(0)
t , . . . ,X(k)

t independent continuous time or discrete
time k + 1-multiple random walks on G. We suppose
|V | ≥ k + 1 and regard X(0)

t as an infected particle and
consider an infection time tinfe: it is the first time that X(0)

t
meets any other particles. Formally, it is given by

tinfe = max
i∈{1,...,k}

tmeet(i),

where

tmeet(i) = inf{t ≥ 0;X(0)
t = X(i)

t }
is the first time that X(0)

t meet X(i)
t and called meeting

time. In this paper, we investigate the exact distributions
or expectations for meeting times and infection times. By
using the principle of inclusion-exclusion, we see that

tinfe =
∑

�⊂{1,...,k}
(−1)|�|+1tmeet(�)

for every path of the random walks, where

tmeet(�) = min
j∈�

tmeet(j)

= inf{t ≥ 0;X(0)
t = X(j)

t for some j ∈ �}.
From this fact, our central aim is to obtain the density

functions or the expectations of tmeet(�) for each � ⊂
{1, . . . , k}. We will achieve it from the theorem derived in
Section 2. It is well-known that a problem to obtain some
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first hitting times can be reduced to find solutions of some
system of linear equations through the technique of the
Laplace transform. In Section 2, we derive a basic relation
of the Laplace transform of meeting time in Theorems 1
and 2. This result is just a kind of harmonic relation and an
extension of that for first hitting times, but plays an impor-
tant role to get exact value of meeting and infection times.
Actually, solving the reduced system of linear equations
for meeting times by that relations, we can show the exact
densities and expectations for some graphs in Section 3.
Moreover, we discuss comparison results among many
conditions of random walks: starting point of the random
walks, number of random walks, parameters of exponen-
tial holding times, graphs, and continuous times versus
discrete times. In Section 4, another tool to analyze the
meeting time of two random walks will be shown . It is
mentioned in [1] that meeting times of two random walks
on some graphs can be regarded as a first hitting time of a
single random walk. We give a generalization of this fact.

1.1 Related work
Several mathematical models of infections are proposed
and investigated. They are classified into the models in
which the number of infected particles increases by meet-
ing between particles, and the models in which the num-
ber of infected particles varies by the factors differ from
the meetings.
In the latter models, many people have studied on infec-

tious disease for a long time (cf. [8]).
In the former models, the particles are move on finite

or infinite graphs. Aldous [1], Aldous and Fill [2], Bshouty
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et al. [3], Cooper et al. [4] and Coppersmith et al. [5] inves-
tigated the expected meeting time of two independent
Markov chains on a finite graph. Using their results, Draief
and Ganesh [7] derived the upper bound for the expected
time that all particles are infected for complete graphs and
regular graphs. In their model, the infected probability
varies by the coincidence time with infected particles and
the infected rate. Such a model is also studied in Datta and
Dorlas [6], and is related to our models; we may take the
parameter for the infected rate to be infinity. Another sim-
ilar models as ours are studied in [14]. They derived the
the upper and lower bound for the time that all particles
are informed(broadcasting time) on a finite square grid.
Kurtz et al. [10] andMachado et al. [12] studied frog mod-
els on complete graphs: infection rule is same as ours in
this model, although non-infected particles are immobile.
They derived the limit theorems for the number of sites
visited by the infected particles. Kurkova et al. [9] investi-
gated the model that the infection rule is same as ours for
an infinite square grid.

1.2 Models and notations
Recall that G = (V ,E) is a finite connected graph and
X(0)
t , . . . ,X(k)

t are independent continuous time or discrete
time Markov chain on V with a same transition probabil-
ity P = (p(x, y))x,y∈V . In this paper we call them random
walks on G if P satisfies p(x, y), p(y, x) > 0 if and only if
xy ∈ E. A p-lazy version of P is the transition matrix given
by pI + (1 − p)P, where I is the identity matrix. We often
consider the lazy version for convenience, especially for
discrete time random walks, because lazy chains are ape-
riodic for any graph. For continuous time random walks,
let 1

θi
> 0 be a mean of an exponential holding time of

X(i) for each i ∈ {0, . . . , k}. Note that they are allowed to
take a different values.Wewrite Px0,...,xk for the probability
measure corresponding to the random walks (X(i)

t )i=0,...,k
starting from (xi)i=0,...,k respectively.

2 Laplace transform of meeting times
We give the key tools to calculate the distribution or the
expectation of meeting times tmeet(�) for any � ⊂ V .

Theorem 1 (Discrete time). Let � ⊂ V. For a dis-
crete time random walk, the Laplace transform of tmeet =
tmeet(�) is given by

Ex0,...,xk
[
e−λtmeet

]

= e−λ
∑

z0,...,zk∈V
p(x0, z0) · · · p(xk , zk)Ez0,...,zk

[
e−λtmeet

]
.

if x0 �= xj for all j ∈ �, and Ex0,...,xk
[
e−λtmeet(�)

] = 1 if
x0 = xj for some j ∈ �. As a corollary, we have

Ex0,...,xk [tmeet]

= 1 +
∑

z0,...,zk∈V
p(x0, z0) · · · p(xk , zk)Ez0,...,zk [ tmeet] .

if x0 �= xj for all j ∈ �.

Theorem 2 (Continuous time). Let � ⊂ V. For a dis-
crete time random walk, the Laplace transform of tmeet =
tmeet(�) is given by

Ex0,...,xk
[
e−λtmeet

] = 1
λ+∑k

l=0 θl

k∑
i=0

θi
∑
y∈V

p(xi, y)

× Ex0,...,xi−1,y,xi+1,...,xk
[
e−λtmeet

]
.

if x0 �= xj for all j ∈ �, and Ex0,...,xk
[
e−λtmeet

] = 1. As a
corollary, we have

Ex0,...,xk [ tmeet] = 1∑k
l=0 θl

(
1 +

k∑
i=0

θi
∑
y∈V

p(xi, y)

×Ex0,...,xi−1,y,xi+1,...,xk [ tmeet(�)]
)
.

Remark 1. Wemention underlying two product graphs
G = (V,E) with V = Vk+1; in the proofs below, an
extendedMarkov chain (cf. [11]) will moves on the graphs.
Let x = (x0, . . . , xk), y = (y0, . . . , yk) ∈ V. For a discrete
time random walk, xy ∈ E if and only if

xiyi ∈ E for all i ∈ {0, . . . , k}.
For a continuous time random walk, xy ∈ E if and only if
there exists a unique i ∈ {0, . . . , k} such that

xiyi ∈ E and xj = yj for all j �= i.

The former graph is called a tensor product of graphs
and the latter graph is called a cartesian product of graphs.

Proof of Theorem 1. We consider a Markov chain on
Vk+1 given by Xt =

(
X(0)
t , . . . ,X(k)

t

)
. Note that i-th

marginal process of Xt is equal in law to X(i)
t respectively

and the transition matrix of this chain is given by

P((x0, . . . , xk), (y0, . . . , yk)) = p(x0, y0) · · · p(xk , yk).
Moreover, we notice that tmeet(�) is equivalent to the

first hitting time of Xt to the set
{
(x0, . . . , xk) ∈ Vk+1; x0 = xifor some i ∈ �

}
.

Thus, the assertion is obtained by an ordinary first-step
analysis of first hitting times.

In order to prove Theorem 2, we let tX(i)
jump =

inf
{
t ≥ 0;X(i)

t �= X(i)
0

}
be a first jump time of X(i)

t and

tjump = mini∈{0,...,k} tX
(i)

jump.
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Lemma 1.

E
[
1{tjump=tX(i)

jump}
e−λtjump

]
= θi

λ + ∑k
l=0 θl

,

where 1A is the indicator function of a set A.

Proof. We remark that

P

(
tjump = tX

(i)
jump

)

= P

(
tX

(i)
jump ≤ min

l �=i
tX

(l)
jump

)

=
∫ ∞

0
θie−θitP

(
t ≤ min

l �=i
tX

(l)
jump

)
dt

=
∫ ∞

0
θie−θit

∏

l �=i
P

(
t ≤ tX

(l)
jump

)
dt

=
∫ ∞

0
θie

−
(∑k

l=0 θl
)
tdt.

Thus,

E

[
1{tjump=tX(i)

jump}
e−λtjump

]
=

∫ ∞

0
e−λtθie

−
(∑k

l=0 θl
)
tdt

= θi

λ + ∑k
l=0 θl

.

Proof of Theorem 2. By Lemma 1, we have

Ex0,...,xk
[
e−λtmeet

]

=
k∑

i=0

∑

y∈V
Ex0,...,xk

[
1{tjump=tX(i)

jump}
1{X(i)

tjump=y}e
−λtmeet

]

=
k∑

i=0

∑

y∈V
p(xi, y)Ex0,...,xk

[
1{tjump=tX(i)

jump}
e−λtjump

]

×Ex0,...,xi−1,y,xi+1,...,xk
[
e−λtmeet

]

= 1
λ + ∑k

l=0 θl

k∑

i=0
θi

∑

y∈V
p(xi, y)

×Ex0,...,xi−1,y,xi+1,...,xk
[
e−λtmeet

]
.

3 Exact computations for graphs
In this section we study exact computations of tinfe =
tinfe(k) = maxi∈{1,...,k} tmeet(i) for certain graphs. Note that
tinfe is nothing but tmeet(1) when k = 1.

3.1 Star graphs
We consider the p-lazy simple random walk on a star
graph for the case k = 1. Let G = (V ,E) be a star graph
with V = {0, . . . ,N} and E = {0x; x = 1, . . . ,N}.

Proposition 1. Set

� = 1
2

(
θ0
θ1

+ θ1
θ0

)
,

A = (1 − p)(θ0 + θ1),

B = (1 − p)

√

(θ20 + θ21 )

(
1 − 1

N

)
,

C = 1
�

+ 1
N
,

D = (θ0 + θ1)(θ0 − θ1)

θ20 + θ21
.

Then,
Px0,x1(tinfe ∈ dt)

dt
= BC

(
1 − 1

N
)e−At sinh (Bt),

Ex0,x1
[
tinfe

] = 1
1 − p

(
1
θ0

+ 1
θ1

) (
1 + �

N

)−1

if x0, x1 �= 0 and x0 �= x1,
Px0,x1(tinfe ∈ dt)

dt
= (1 − p)e−At (θ0C cosh (Bt) − θ1D) ,

Ex0,x1 [ tinfe]

= 1
1 − p

(
1
θ1

(
1 − 1

N

) (
1 + �

N

)−1
+ 1

θ0 + θ1

)

if x0 = 0 and x1 �= 0, and
Px0,x1(tinfe ∈ dt)

dt
= (1 − p)e−At (θ1C cosh (Bt) + θ0D) ,

Ex0,x1 [ tinfe]

= 1
1 − p

(
1
θ0

(
1 − 1

N

) (
1 + �

N

)−1
+ 1

θ0 + θ1

)

if x0 �= 0 and x1 = 0.

Corollary 1. We see that

E0,1
[
tinfe

] ≤ E1,0[ tinfe] (1)

if and only if θ0 ≤ θ1, and

max
x0,x1∈V

Ex0,x1 [ tinfe]= E1,2[ tinfe] (2)

for any θ0, θ1 > 0.

Remark 2. It is shown in [1, 2] that Ex0,x1 [ tinfe] can
be bounded by the maximum expected hitting time for a
reversible Markov chain, that is,

max
x0,x1

Ex0,x1
[
tinfe

] ≤ max
x0,x1

Ex0 [thit(x1)] ,

where thit(y) = inf
{
t ≥ 0;X(0)

t = y
}
. In addition, it is

mentioned as a remark that the above bound is not
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tight for a star graph. This remark also can be verified
from Proposition 1 as follows. Note that the maximum
expected hitting time is

max
x,y∈V Ex[ thit(y)]∼ 2N

(1 − p)θ0
,

where f (N) ∼ g(N) means limN→∞ f (N)/g(N) = 1. On
the other hand, from Proposition 1, we see that

Ex0,x1[ tinfe]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∼ 1
1−p

(
1
θ0

+ 1
θ1

)
, x0, x1 �= 0 and x0 �= x1,

∼ 1
1−p

(
1
θ1

+ 1
θ0+θ1

)
, x0 = 0 and x1 �= 0,

∼ 1
1−p

(
1
θ0

+ 1
θ0+θ1

)
, x0 �= 0 and x1 = 0.

Therefore, maxx0,x1 Ex0,x1 [ tinfe]= O(1) and maxx,y∈V
Ex[ thit(y)]= O(N).

Lemma 2. The Laplace transform of tinfe is given by

Ex0,x1
[
e−λtinfe

] = BC(
1− 1

N
)
(

B
(λ+A)2−B2

)
.

if x0, x1 �= 0 and x0 �= x1,

Ex0,x1 [ e−λtinfe ]= (1 − p)
(

θ0C(λ + A)

(λ + A)2 − B2 − θ1D
λ + A

)

if x0 = 0 and x1 �= 0, and

Ex0,x1 [ e−λtinfe ]= (1 − p)
(

θ1C(λ + A)

(λ + A)2 − B2 + θ0D
λ + A

)

if x0 �= 0 and x1 = 0, where A,B,C and D are given in
Proposition 1.

Proof. Put α = E1,2[ e−λtinfe ] ,β = E0,1
[
e−λtinfe

]
and γ =

E1,0[ e−λtinfe ]. From Theorem 2, they satisfy the following:

(λ + θ0 + θ1)α

= θ0(pα + (1 − p)β) + θ1(pα + (1 − p)γ ),
(λ + θ0 + θ1)β

= θ0

(
pβ+ (1−p)

N
(1+(N−1)α)

)
+θ1 (pβ+(1 − p)) ,

(λ + θ0 + θ1)γ

= θ0 (pγ +(1−p))+θ1

(
pγ + (1−p)

N
(1+(N−1)α)

)
,

or, equivalently,

(λ + A)α = (1 − p)(θ0β + θ1γ ),

(λ + A)β = (1 − p)
(

θ0
N

+ θ1 + θ0

(
1 − 1

N

)
α

)
,

(λ + A)γ = (1 − p)
(

θ0 + θ1
N

+ θ1

(
1 − 1

N

)
α

)
.

By solving the above equations, we obtain the assertion.

Proof of Proposition 1. The density functions immedi-
ately follow from Lemma 2 and

λ + A
(λ + A)2 − B2 =

∫ ∞

0
e−λte−At cosh (Bt)dt, (3)

B
(λ + A)2 − B2 =

∫ ∞

0
e−λte−At sinh (Bt)dt. (4)

The expectations will be obtaind by taking − ∂
∂λ
Ex0,x1

[ e−λtinfe ]
∣∣
λ=0 in Lemma 2. Noting that

A2 − B2 = (1 − p)2(θ20 + θ21 )C,
A2 + B2 = (1 − p)2(θ20 + θ21 )2C

×
(

1
θ0θ1

(
1− 1

N

) (
1 + �

N

)−1
+ 1

θ20 + θ21

)
,

if x0, x1 �= 0 and x0 �= x1, we have

Ex0,x1
[
tinfe

] = B2C
1 − 1

N
· 2A
(A2 − B2)2

= 2(θ0 + θ1)

(1 − p)(θ20 + θ21 )C

= 1
1 − p

(
1
θ0

+ 1
θ1

) (
1 + �

N

)−1
.

If x0 = 0 and x1 �= 0,
Ex0,x1

[
tinfe

]

= (1 − p)
(

θ0C · A2 + B2

(A2 − B2)2
− θ1D · 1

A2

)

= 1
1 − p

(
1
θ1

(
1 − 1

N

) (
1 + �

N

)−1
+ 1

θ0 + θ1

)
.

If x0 �= 0 and x1 = 0,
Ex0,x1 [ tinfe]

= (1 − p)
(

θ1C · A2 + B2

(A2 − B2)2
+ θ0D · 1

A2

)

= 1
1 − p

(
1
θ0

(
1 − 1

N

) (
1 + �

N

)−1
+ 1

θ0 + θ1

)
.

Proof of Corollary 1. The inequality (1) follows immedi-
ately from Proposition 1. The equality (2) will be shown as
follows. Put α = max{θ0, θ1} and β = min{θ0, θ1}. Note
that αβ = θ0θ1 and α + β = θ0 + θ1. Then,

max{E0,1[ tinfe] ,E1,0[ tinfe] }

= 1
1 − p

(
1+ �

N

)−1 (
1
α

(
1 − 1

N

)
+ 1

α + β

(
1+ �

N

))
,

E1,2[ tinfe]

= 1
1 − p

(
1 + �

N

)−1 (
1
α

+ 1
β

)
.
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From the above two equalities and � = 1
2

(
β
α

+ α
β

)
, we

obtain

E1,2[ tinfe]−max{E0,1[ tinfe] ,E1,0[ tinfe] }
= E1,2[ tinfe]−max{E0,1[ tinfe] ,E1,0[ tinfe] }

= 1
(1 − p)(α + β)

(
1 + �

N

)−1

×
(

α

β

(
1 − 1

2N

)
+ 1

N

(
1 + β

2α

))

≥ 0.

3.2 Cycle graphs
We consider a random walk on a cycle graph for the case
k = 1. Let V = {0, 1, . . . ,N −1} and we give the transition
probability by

p(x, y) =
⎧
⎨

⎩

p, y = x + 1 mod N ,
q, y = x − 1 mod N ,
0, otherwise,

where 0 ≤ p, q ≤ 1 and p + q = 1. Note that we can apply
Theorem 3 stated in Section 4 when the random walk is
simple, that is, p = q = 1/2.

Proposition 2. Set

μ± = 1
2(θ0p + θ1q)

(
(λ + θ0 + θ1)

±
√

(λ + θ0 + θ1)2 − 4(θ0p + θ1q)(θ0q + θ1p)
)
.

Then, the Laplace transform of tinfe is given by

Ex,y[ e−λtinfe ]= μ
f (x−y)
+

(
1 − μN−

) + μ
f (x−y)
−

(
μN+ − 1

)

μN+ − μN−
,

where f (z) = z mod N.

Corollary 2. Put ν = θ0q+θ1p
θ0p+θ1q and f (z) = z mod N.

Then,

Ex,y[ tinfe]

= 1
(p − q)(θ0 − θ1)

(
N(1 − νf (x−y))

1 − νN
− f (x − y)

)

if p �= q and θ0 �= θ1, and

Ex,y
[
tinfe

] = f (x − y)(N − f (x − y))
θ0 + θ1

if p = q or θ0 = θ1.

Remark 3. 1. It is worth noting that the distribution
of tinfe is independent of p if θ0 = θ1, because of the
definition of μ±.

2. Let thit(y) = inf
{
t ≥ 0;X(0)

t = y
}
and

μ̃± =
λ + θ0 ±

√
(λ + θ0)2 − 4θ20pq
2θ0p

.

Then, we can verify that

Ex
[
e−λthit(y)

]
= μ̃

f (x−y)
+

(
1 − μ̃N−

)+ μ̃
f (x−y)
−

(
μ̃N+ − 1

)

μ̃N+ − μ̃N−
.

Therefore the Laplace transform of the hitting time
has exactly the same expression as Proposition 2 by
replacing μ± with μ̃±. We notice that
limθ1→0 μ± = μ̃±.

3. We see from Corollary 2 that

Ex,y
[
tinfe

] =
{
O(N), p �= q and θ0 �= θ1,
O(N2), p = q or θ0 = θ1.

Note that (p− q)(θ0 − θ1) �= 0 is equivalent to ν �= 0.

Proof of Proposition 2. Put ax,y = Ex,y[ e−λtmeet(�)]. We
first remark that

ax,y = af (x−y),0 (5)

for any x, y ∈ V because of the definition of the transition
probability. So we may just have ãz = Ez,0[ e−λtmeet(�)] for
z ∈ V . From Theorem 2, they satisfy

(λ + θ0 + θ1)ãz
= θ0(paf (z+1),0 + qaf (z−1),0)

+ θ1(paz,f (0+1) + qaz,f (0−1))

= (θ0p + θ1q)ãf (z+1) + (θ0q + θ1p)ãf (z−1).

Here we used af (z+1),0 = az,f (0−1) and af (z−1),0 =
az,f (0+1) for the last equality, which are obtained from
(5). This system of equation together with the boundary
conditions ã0 = ãN = 1 has a solution

ãz = μz+(1 − μN−) + μz−(μN+ − 1)
μN+ − μN−

.

Proof of Corollary 2. We prove the corollary in a similar
fashion to that in the proof of Proposition 2. Put bx,y =
Ex,y[ tmeet(�)] and b̃z = Ez,0[ tmeet(�)]. Then, we see that

bx,y = bf (x−y),0

for x, y ∈ V and

(θ0 + θ1)b̃z
= 1 + θ0(pbf (z+1),0 + qbf (z−1),0)

+θ1(pbz,f (0+1) + qbz,f (0−1))

= 1 + (θ0p + θ1q)b̃f (z+1) + (θ0q + θ1p)b̃f (z−1).
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for z ∈ V . This system of equation together with the
boundary conditions b̃0 = b̃N = 0 has a solution

b̃z = 1
(p − q)(θ0 − θ1)

(
N(1 − νz)

1 − νN
− z

)

if p �= q and θ0 �= θ1, and

b̃z = z(N − z)
θ0 + θ1

if p = q or θ0 = θ1.

3.3 Complete graphs
We consider the p-lazy simple random walk on a com-
plete graph with N + 1-vertices. For simplicity, we use the
following notations:

Ñ = N
1 − p

,

θij = θi + θj.

3.3.1 The case k = 1
Proposition 3. Let x0 �= x1. For continuous time ran-

dom walks, it holds that
Px0,x1(tinfe ∈ dt)

dt
= θ01

Ñ
e−

θ01
Ñ t ,

Ex0,x1 [ tinfe] = Ñ
θ01

.

For discrete time random walks, it holds that

Px0,x1(tinfe = t)

=
(
1 − (1 + p)Ñ − 1

Ñ2

)t−1
(1 + p)Ñ − 1

Ñ2
,

Ex0,x1 [ tinfe] = Ñ2

(1 + p)Ñ − 1
.

Remark 4. We notice from Proposition 3 that tinfe has
an exponential distribution of the parameter θ01

Ñ for con-
tinuous time random walks, and a geometric distribution
of the parameter (1+p)Ñ−1

Ñ2 for discrete time randomwalks.

Corollary 3. Let t(dis.)infe be an infection time of a dis-
crete time random walk and t(con.)infe an infection time of a
continuous time random walk. Then,

Ex0,x1

[
t(dis.)infe

]
≤ Ex0,x1

[
t(con.)infe

]
(6)

if and only if p ≤ 1 + (θ01−2)N
N+1 .

Proof of Proposition 3. Put α = Ex0,x1 [ e−λtinfe ] for any
fixed x0, x1 ∈ V with x0 �= x1. From Theorem 2, α satisfies
the following:

(λ + θ01)α = θ0

(
∑

z∈V
p(x0, z)Ez,x1 [ e−λtinfe ]

)

+θ1

(
∑

z∈V
p(x1, z)Ex0,z[ e−λtinfe ]

)

= θ01

(
pα + 1

Ñ
(1 + (N − 1)α)

)
.

Thus, the density function is obtained from

α = θ01

Ñλ + θ01

=
∫ ∞

0
e−λt θ01

Ñ
e−

θ01
Ñ tdt.

The expectation is also obtained by − ∂α
∂λ

∣∣
λ=0. On the

other hand, from Theorem 1, α satisfies the following:

eλα =
∑

z0,z1∈V
p(x0, z0)p(x1, z1)Ex0,x1 [ e−λtinfe ]

= p
(
pα + 1

Ñ
(1 + (N − 1)α)

)
+ 1

Ñ

(
p + 1

Ñ
Nα

)

+ 1
Ñ

(N − 1)
(
pα + 1

Ñ
(1 + (N − 1)α)

)

Thus, the density function is obtained from

α = (1 + p)Ñ − 1
Ñ2(eλ − 1) + ((1 + p)Ñ − 1)

=
∞∑

t=1
e−λt

(
1 − (1 + p)Ñ − 1

Ñ2

)t−1
(1 + p)Ñ − 1

Ñ2
.

The expectation is also obtained by − ∂α
∂λ

∣∣
λ=0.

Proof of Corollary 3. From Proposition 3, the inequality

Ex0,x1 [ t
(con.)
infe ]

Ex0,x1 [ t
(dis.)
infe ]

= (1 + p)Ñ − 1
θ01Ñ

= N − 1 + p(N + 1)
θ01N

≤ 1

holds if and only if

p ≤ (θ01 − 1)N + 1
N + 1

= 1 + (θ01 − 2)N
N + 1

.
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3.3.2 The case k = 2
Proposition 4. Let x0 �= x1, x2 and

I = (1 − p)θ12
2

(
1 + 3θ0 + 2θ12

θ12N

)
,

J = (1 − p)θ12
2

√(
1 − θ0

θ12N

)2
+ 4θ0

θ12N2 ,

K =
(
1 − (2θ0+3θ12)θ0

(2θ0+θ12)θ12N

)

√(
1 − θ0

θ12N

)2 + 4θ0
θ12N2

,

L =
(
3θ0 + θ12
θ0 + θ12

)
(
1 + (θ0−θ12)θ0

(3θ0+θ12)θ12N

)

√(
1 − θ0

θ12N

)2 + 4θ0
θ12N2

Then, the density function of tinfe is given by

Px0,x1,x2(tinfe ∈ dt)
dt

= θ01

Ñ
e−

θ01
Ñ t + θ02

Ñ
e−

θ02
Ñ t

− 2θ0 + θ12

Ñ
e−It(cosh (Jt) + K sinh (Jt))

if x1 �= x2, and

Px0,x1,x2(tinfe ∈ dt)
dt

= θ01

Ñ
e−

θ01
Ñ t + θ02

Ñ
e−

θ02
Ñ t

− θ0 + θ12

Ñ
e−It(cosh (Jt) + L sinh (Jt))

if x1 = x2.

Lemma 3. Consider the Laplace transform of tmeet =
tmeet(�) for � = {1, 2}. If x0 �= x1, x0 �= x2 and x1 �= x2,
then

Ex0,x1,x2
[
e−λtmeet

] = (2θ0 + θ12)Ñλ + b
Ñ2λ2 + aÑλ + b

,

and if x0 �= x1, x0 �= x2 and x1 = x2, then

Ex0,x1,x1
[
e−λtmeet

] = (θ0 + θ12)Ñλ + b
Ñ2λ2 + aÑλ + b

,

where

a = θ12N + 3θ0 + 2θ12,
b = (2θ0 + θ12)θ12(N + 1) + 2θ20 .

Proof. Put α = E0,1,2
[
e−λtmeet

]
,β = E0,1,1

[
e−λtmeet

]
.

From Theorem 2, they satisfy the following:

(λ + θ0 + θ12)α

= θ0

(
pα + 1

Ñ
(2 + (N − 2)α)

)

+θ12

(
pα + 1

Ñ
(1 + β + (N − 2)α)

)
,

(λ + θ0 + θ12)β

= θ0

(
pβ + 1

Ñ
(1 + (N − 1)β)

)

+θ12

(
pβ + 1

Ñ
(1 + (N − 1)α)

)
.

By solving the above equations, we obtain the assertion.

Proof of Proposition 4. Let � = {1, 2}. From Lemma 3,
we see that

Ex0,x1,x2

[
e−λtmeet(�)

]

= (2θ0 + θ12)Ñλ + b
Ñ2λ2 + aÑλ + b

= 1
Ñ2

(2θ0 + θ12)
(
Ñλ + a

2
) + 2b−(2θ0+θ12)a

2(
λ + a

2Ñ

)2 −
(√

a2−4b
2Ñ

)2

= 2θ0 + θ12

Ñ

(
λ + I

(λ + I)2 − J2
+ K

J
(λ + I)2 − J2

)

if x0 �= x1, x0 �= x2 and x1 �= x2, and

Ex0,x1,x2

[
e−λtmeet(�)

]

= (θ0 + θ12)Ñλ + b
Ñ2λ2 + aÑλ + b

= 1
Ñ2

(θ0 + θ12)
(
Ñλ + a

2
) + 2b−(θ0+θ12)a

2(
λ + a

2Ñ

)2 −
(√

a2−4b
2Ñ

)2

= θ0 + θ12

Ñ

(
λ + I

(λ + I)2 − J2
+ L

J
(λ + I)2 − J2

)
.

if x0 �= x1, x0 �= x2 and x1 = x2. Note that

a2 − 4b = θ212N
2
((

1 − θ0
θ12N

)2
+ 4θ0

θ12N2

)
> 0.

Considering inverse Laplace transform as (3) and (4), we
have

Px0,x1,x2(tmeet(�) ∈ dt)
dt

= 2θ0 + θ12

Ñ
e−It(cosh (Jt) + K sinh (Jt)),
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if x0 �= x1, x0 �= x2 and x1 �= x2, and

Px0,x1,x2(tmeet(�) ∈ dt)
dt

= θ0 + θ12

Ñ
e−It(cosh (Jt) + L sinh (Jt))

if x0 �= x1, x0 �= x2 and x1 = x2. Therefore, combining
results above and Proposition 3, we can compute

Px0,x1,x2(tinfe ∈ dt)
dt

= Px0,x1,x2(tmeet({1}) ∈ dt)
dt

+ Px0,x1,x2(tmeet({2}) ∈ dt)
dt

−Px0,x1,x2(tmeet({1, 2}) ∈ dt)
dt

.

Corollary 4. We denote the infection time of k + 1-
multiple random walks by tinfe(k). Then,

Ex0,x1
[
tinfe(1)

] ≤ Ex0,x1,x1
[
tinfe(2)

] ≤ Ex0,x1,x2
[
tinfe(2)

]

(7)

for any θ0, θ1, θ2 > 0 and any mutually distinct x0, x1, x2
∈ V.

Lemma 4. Suppose x0 �= x1 and x0 �= x2. Then,

Ex0,x1,x2 [ tmeet({1, 2})]

=
⎧
⎨

⎩

(θ12(N+1)+θ0)Ñ
(2θ0+θ12)θ12(N+1)+2θ20

, x1 �= x2,
(θ12(N+1)+2θ0)Ñ

(2θ0+θ12)θ12(N+1)+2θ20
, x1 = x2,

and

Ex0,x1,x2 [ tinfe]

=

⎧
⎪⎪⎨

⎪⎪⎩

(
1− θ0θ12

θ̃ (2θ0+θ12)((2θ0+θ12)θ12(N+1)+2θ20 )

)
θ̃Ñ ,x1 �= x2,

(
1 − 2θ0(θ0+θ12)

θ̃ (2θ0+θ12)((2θ0+θ12)θ12(N+1)+2θ20 )

)
θ̃Ñ ,x1= x2,

where

θ̃ = 1
θ01

+ 1
θ02

− 1
θ01 + θ02

.

Proof. The expectations of tmeet({1, 2}) are obtained
from Lemma 3 by taking − ∂

∂λ
Ex0,x1,x2 [ e−λtmeet(�)]

∣∣
λ=0.

The expectations of tinfe are obtained by computing

Ex0,x1,x2 [ tinfe]
= Ex0,x1,x2 [ tmeet({1})]+Ex0,x1,x2 [ tmeet({2})]

−Ex0,x1,x2 [ tmeet({1, 2})] .

Proof of Corollary 4. We observe from Lemma 4 that

Ex0,x1,x1 [tmeet({1, 2})] ≤ (θ12 + θ0)Ñ
(2θ0 + θ12)θ12 + θ20

= Ñ
θ0 + θ12

since N ≥ 1. Thus the first inequality of (7) holds from

Ex0,x1,x1
[
tinf (2)

] − Ex0,x1
[
tinf (1)

]

= Ex0,x1,x1
[
tinf (2)

] − Ex0,x1,x1 [tmeet({1})]
= Ex0,x1,x1 [tmeet({2})] − Ex0,x1,x1 [tmeet({1, 2})]

≥ Ñ
θ0 + θ2

− Ñ
θ0 + θ12

≥ 0.

Here the second equality follows from the principle of
inclusion-exclusion. The second inequality of the corol-
lary is also holds from

Ex0,x1,x2

[
t(2)inf

]
− Ex0,x1,x1

[
t(2)inf

]

= −Ex0,x1,x2 [tmeet({1, 2})] + Ex0,x1,x1 [tmeet({1, 2})]
≥ 0

since Ex0,x1,x2 [tmeet({1, 2})] ≤ Ex0,x1,x1 [tmeet({1, 2})] by
Lemma 4.

4 Meeting times of tmeet(1)

Finally, we give another tool for meeting times tmeet(�) for
� = {1}.
A couple of examples of graphs is mentioned in [1] such

that “difference" of two random walks X(0)
t − X(1)

t on the
graph behaves precisely as X(0)

2t . If this property holds,
then the meeting time of two random walks is equivalent
to half of the first hitting time of a single random walk.
Of course, it must be assumed that an additive operation
on V is defined, that is, X(0)

t − X(1)
t ∈ V . Other detailed

assumptions are stated below.

Theorem 3. We consider tmeet = tmeet({1}) of continu-
ous time random walk on G = (V ,E) such that an additive
operation on V is defined. Let thit(x) = inf {t ≥ 0;Yt = x}
for x ∈ V, where Y2t = X(0)

t − X(i)
t is the continuous time

random walk with mean 2
θ0+θi

of exponential holding time.
Then,

tmeet
law= 1

2
thit(x0 − x1)

with respect to Px0,x1 , if the transition matrix P = (p(x, y))
satisfies the following:

1. p(x, y) = p(y, x) for all x, y ∈ V ,
2. p(x, y) = p(x − y, 0) for all x, y ∈ V .
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Proof of Theorem 3. We remark that the hypotheses 1
and 2 in the theorem are equivalent to

p(x, y − z) = p(y, x + z) for all x, y, z ∈ V .

Then, for any function f : R → R, we have

Ex0,x1

[
f (X(0)

t − X(1)
t )

]

=
∑

v,w∈V
f (v − w)pt(x0, v)pt(x1,w)

=
∑

v∈V

∑

z∈V
f (z)pt(x0, v)pt(x1, v − z)

=
∑

z∈V
f (z)

∑

v∈V
pt(x0, v)pt(v, x1 + z)

=
∑

z∈V
f (z)p2t(x0, x1 + z)

=
∑

z∈V
f (z)p2t(x0 − x1, z) = Ex0,x1 [ f (Y2t)] .

This completes the proof.

Remark 5. Theorem 3 also holds for discrete time ran-
dom walk under the obvious modification.

Example 1. We demonstrate how to define an additive
operator on V for continuous time simple random walks
on G = (V ,E).

1. Let G be a cycle graph with a vertex set
V = {0, . . . , n − 1} and edge set E = {xy; x − y = 1
mod n}. Then, Theorem 3 holds if x − y is given by
x − y mod n. In this context, we can recover the
result in Section 3.2 for the case where p = q = 1/2.

2. Let G be a hamming graph with a vertex set
V = {0, . . . , n − 1}d and edge set
E = {xy; |{i; xi �= yi}| = 1}. Then, Theorem 3 holds if
(x− y)i for all i = 1, . . . , d is given by xi − yi mod n.
The hitting times for hamming graphs are
investigated in [13].
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