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Abstract

In the preparatory stage of product manufacturing, its defect risk is often evaluated by checking whether
experimentally manufactured products cause the defect or not. The experimentally manufacturing is conducted for
various values of variables which may related the defect, but manufacturing products for all combinations of the
values will cost a lot especially when the number of variables is large. To overcome this problem, active learning
methods which may be able to evaluate the defect risk efficiently by selecting values purposefully are considered. In
this paper, it is pointed out that even a modern active learning method is inappropriate if the nonlinearity of the
relation between the variables and the defect is strong and if the defect rate is small. And then a simple active
learning method which can work well for such a case is proposed. Through simulation studies and real data analysis,
the validity of the proposed method is checked.

Keywords: Importance sampling; Nonlinear classification; Optimal design; Random sampling; Rare event; Support
vector machine

1 Introduction
Let us consider a product with the risk of having a defect
at the time of manufacturing. We assume that the risk
depends on the values of various variables such as the tem-
perature, the amount of an ingredient or operating time.
In particular, letting yi = −1 and yi = 1 mean that the i-
th product respectively has and does not have a defect and
letting xi (∈ D ⊂ R

p) be the values of such p variables, we
assume that the defect risk for xi is given by

P(yi = −1|xi) = exp(h(xi))
1 + exp(h(xi))

for an appropriate function h(x). In product manufactur-
ing, it is indispensable to evaluate P(yi = −1|xi) because
we can avoid to yield defects which may cause a severe
damage in manufacturing company if we know P(yi =
−1|xi) (see e.g., Katayama et al. [3], Sun & Li [11]). Let us
consider the appropriate function as h(x). Needless to say,
the products are manufactured not to have any defect, and
so y tends to be one if x is in the central zone of the domain
D. That is, the region {x | h(x) > 0} should be small and
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at the edge of D. In addition, considering that the cause
of the defect is usually multiple, such regions, which pro-
duces a defect more likely than not, tend to be scattered at
the edge ofD. Namely, such regions should not only have a
strongly nonlinear boundary but also tend to be separated
although they will not be far from each other. Therefore,
we suppose that h(x) has a strong nonlinearity although it
will not have a drastic fluctuation.
Under this situation, we consider to estimate the deci-

sion rule sgn(h(x)) along with the defect risk by sampling
{(yi, xi) | xi ∈ X ; i = 1, 2, . . . , n} appropriately. Here X (⊂
D) is a set of candidates of xi we can sample. This is D
itself in some cases and a finite set in other cases. As a ver-
satile method for giving nonlinear decision rules, recently
the SVM (support vector machine; e.g., Cristianini
& Shawe-Taylor [2], Scholköpf & Smola [9]) becomes a
standard tool. In addition, the Gaussian process regres-
sion method (e.g., Rasmussen & Williams [8]) is known
to have comparable performance. Although these meth-
ods are capable of dealing with strong nonlinearity, a lot of
samples are required to deal with it as a matter of course.
This requirement becomes evident when the dimension of
x is large. Therefore, an appropriate selection of samples
from X is important to estimate sgn(h(x)) efficiently for
the case where the sampling cost is not necessarily low and
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we can select samples purposefully. This type of appropri-
ate selection is called optimal design in classic statistical
area and active learning in machine learning area.
While the active learning versions for the above-

mentioned nonlinear discriminant methods are not suf-
ficiently developed, the ASVM (active learning SVM)
proposed by Tong & Koller [12] gets a lot of attention.
The ASVM, an active learning method specialized for the
SVM, can be implemented easily for considerably huge
data and has a high computational efficiency. Roughly
speaking, however, the sampling scheme in the ASVM is
to select samples close to the decision boundary estimated
by already gotten data, and it is often the case that the
ASVM does not work well for our problem owing to the
sampling scheme. Also the method in Umezu &Ninomiya
[13] does not work well for our problem although it was
proposed to overcome the weak point of the ASVM. Our
main purpose is to show the lack of the development in
active learning methods for a kind of discriminant prob-
lems even though they are simple and general problems.
In addition, as the first step of the development, we try to
provide a simple and computer-efficient method capable
of such discriminant problems.
The rest of the paper is as follows. In Sections 2 and 3,

we will introduce the above-mentioned non-linear dis-
criminant methods and active learning methods, respec-
tively. In Section 4, after explaining why such methods
are not suitable for our problem, we will propose a sim-
ple but effective method. The method is shown to be
valid through a simulation study in Section 5, and then we
report the result in which the method is applied to real
data in Section 6. We suggest how to evaluate the rate
of producing defects in Section 7, and some concluding
remarks are presented in Section 8.

2 Existing discriminant methods
Nowadays the SVM is one of the most standard tools as
an efficient and effective non-linear discriminant method.
Let us explain its detail because later we not only intro-
duce its active learning version but also use it in our
proposal.
The SVM is a classifier whose decision rule is

y = sgn(w · φ(x))

for unknown input x, where sgn(·) is the sign function that
returns 1 or−1 when the argument is respectively positive
or negative, and w · φ(x) is called a discriminant function.
Here, φ(·) is a map from the space X of the input x to a
higher dimensional so-called feature space F , which sat-
isfies φ(x) · φ(x̃) = k(x, ỹx), where k(·, ·) is a symmetric
and positive definite kernel. In addition, w (∈ F) is an
unknown coefficient for φ(x).

The optimal coefficient ŵ is given by maximizing a
so-called margin. For a dataset of n-tuple {(yi, xi) | i =
1, 2, . . . , n} consisting of an input xi (∈ D) and its output
yi (∈ {1,−1}), the maximization problem reduces to

max
w∈V min

i∈{1,2,...,n}{yiw · φ(xi)},

where

V ≡ {w ∈ F | ||w|| = 1; ∀i, yiw · φ(xi) > 0} (1)

is called the version space. You may think this opti-
mization problem is hard to solve because F is a high
dimensional space, but it can be shown by the represen-
ter theorem (e.g., Shawe-Taylor & Cristianini [10]) that
the optimal coefficient of w provides a simple estimated
discriminant function as

ŵ · φ(x) =
n∑

i=1
α̂ik(x, xi), (2)

where α̂i is given by the following optimization problem:

max
α∈Rn

n∑

i=1
αi − 1

2

n∑

i,j
αiαjyiyjk(xi, xj)

subject to
n∑

i=1
αiyi = 0 and ∀i, αi ≥ 0. (3)

Since this optimization problem is convex with respect
to the variables to be optimized, we can use a pop-
ular method of convex optimization (e.g., Boyd &
Vandenberghe [1]). Note that in general φ(x) is nonlinear
with respect to x, the discriminant function ŵ · φ(x) and
the decision boundary {x̃ | ŵ·φ(x̃) = 0} are also nonlinear.
While there are so many kinds of kernels (e.g., Chapter

4 in Rasmussen &Williams [8]), we can say that one of the
most frequently used kernels is Gaussian kernel with the
form of

k(x, x̃) = exp(−γ ‖x − x̃‖2) (x, x̃ ∈ R
p),

where γ (> 0) is a tuning parameter which controls the
dispersion of the kernel. In this paper, we use this kernel
and select the optimal value of γ by cross-validation.
Except for the SVM, the Gaussian process regression

method adapted for discriminant problems is well-known
as a nonlinear discriminant method which has a similar
performance to the SVM with the Gaussian kernel (e.g.,
Rasmussen & Williams [8]). In this method, a monotone
function of the probability of being y = 1 (y = −1) for
the input x, which is denoted by Z(x), is regarded as the
Gaussian process (random field) with a positive autocor-
relation. If the autocorrelation Cor[Z(x),Z(x̃)] and the
relationship between P[ y = 1|x] and Z(x) is given, about
the output ỹ for an unknown input x̃, we can evaluate the
distribution of ỹ conditional on {(xi, yi) | i = 1, 2, . . . , n}
and x̃ in a simple form. Then, we can predict ỹ using



Umezu et al. Pacific Journal of Mathematics for Industry  (2015) 7:8 Page 3 of 8

the conditional distribution. Because this prediction is
based on a framework of classic statistics, we can evalu-
ate a prediction accuracy, conduct a variable selection and
implement an optimal design according to the framework.

3 Active learning
The active learning method (optimal design method) is to
design inputs to improve a learning (estimation) accuracy
for the case where we can design the inputs purpose-
fully. For the SVM, classic optimal design methods are not
applicable, and then a specialized method is developed.
In this section, we introduce such a method, the ASVM,
proposed by Tong & Koller [12].
Before introducing the ASVM, we first describe clas-

sic optimal design methods, the A-optimal and D-optimal
designs. Generally speaking, for a parameter vector θ and
its estimator θ̂ , the mean squared error matrix E[ (θ̂ − θ)

(θ̂ − θ)′] is a natural index for the estimation accuracy. It
is divided into the variance-related term E[ (θ̂ −E[ θ̂ ] )(θ̂ −
E[ θ̂ ] )′] and the bias-related term (E[ θ̂ ]−θ)(E[ θ̂ ]−θ)′,
and in well-used estimation methods such as the maxi-
mum likelihood method, the former becomes the main
term asymptotically. In classic optimal design methods,
it is proposed to give a new input which minimize the
trace or determinant of the main term E[ (θ̂ − E[ θ̂ ] )(θ̂ −
E[ θ̂ ] )′], and it is called A-optimal design or D-optimal
design, respectively (Kiefer [4, 5], Kiefer & Wolfowitz
[6]). Because we cannot evaluate this matrix explicitly
in general, it is common to use the inverse of Fisher’s
information matrix in place of it, which is asymptoti-
cally equivalent to it under some regularity conditions.
Note that the A-optimal and D-optimal designs are equiv-
alent under a setting of linear regression. Also note that
in the D-optimal design, the input giving the maximum
prediction variance of its output is selected under some
conditions, which is an important property. That is, letting
ŷ(x; θ̂) be the predictive value of the output for x, the D-
optimal design selects argmaxxV[ ŷ(x; θ̂)] as a new input,
and so it is regarded as a method which gradually reduces
region which gives unstable prediction.
On the other hand, the SVM cannot use the above

optimal design methods because we have no evaluation
formula for the variances of parameter estimators in the
SVM setting. Actually as seen from (3), the numbers of
parameters and samples are the same, and so we have no
evaluation formula even in an asymptotical form. Under
this situation, Tong & Koller [12] propose a new criterion
for sampling based on the version space for the SVM.
After getting a dataset of n-tuple {(yi, xi) | i =

1, 2, . . . , n}, the version space is defined as in (1). In this
definition, each yiw·φ(xi) > 0 represents a half space inF
andV represents the polyhedral body which is the product
set of the half spaces. As the (n + 1)-th new sample, they
propose to select xn+1 (∈ X ) such that the hyperplane

w · φ(xn+1) = 0 divides V into two parts as equally as
possible. It is indicated in Tong & Koller [12] that the
(n + 1)-th new sample is close to

argmin
x∈X

|ŵ · φ(x)|

for the estimated discriminant function in (2). Therefore,
this method selects xn+1 such that ŵ · φ(xn+1) is close
to 0, in other words, xn+1 which is close to the decision
boundary.

4 Proposedmethod
In this section, first we will point out a severe problem
in the ASVM under our situation. Next we will propose a
simple active learning method which avoids the problem.
For simplicity, we assume that the dimension p of inputs

is 2, and let us consider the example in which all candi-
dates of the inputs and their outputs are as in the left of
Fig. 1. We consider the situation where the region of x in
which y = −1 is given more likely than y = 1 tends to
be separated and near the edge but they will not be far
from each other. As written in Section 1, this situation is
natural for the defect rate evaluation problem in product
manufacturing. Actually, our real data treated later have
this situation while p is much larger.
Let us imagine that the ASVM is applied to this exam-

ple. Although the ASVM is an active learning method,
we cannot get samples actively in the first stage, and so
we get them completely at random. Suppose that they are
filled points in the right of Fig. 1. If we estimate the deci-
sion boundary based on them by the SVM, the curve in
the figure is obtained. After that, we get samples accord-
ing to the sampling scheme of the ASVM. Then decision
boundary for the left group of y = −1 will be improved
step by step because inputs close to the estimated decision
boundary must be selected as explained in Section 3. On
the other hand, the inputs with y = −1 in the right group
are rarely sampled, and so the estimated decision bound-
ary near the right group will not appear for a long time.
Thus, on the whole, the discriminant accuracy will not be
much improved even if the sampling is repeated.
When p is large and the number of outputs of y = −1

is small, the above phenomenon becomes apparent. The
region giving y = −1 more likely than not tends to be
more separated, and it is difficult to get any sample from a
number of separated regions at the first random sampling.
In addition, it takes longer time to get a sample from the
separated regions where no inputs are sampled at the first
stage. Thus, it is indicated that active learning methods
which get samples near the estimated decision boundary
are not suitable for this type of cases.
On the other hand, the Gaussian process regression

method, which has comparable performance to the SVM,
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Fig. 1 Example of two-dimensional case. In the left, the blue and red open circles represent the candidates of inputs with y = 1 and y = −1,
respectively. In the right, the filled circles and the curve represent the sampled inputs, the black solid line is the estimated decision boundary via
SVM, and the purple solid line is the linear discriminant boundary

is based on a framework of classic statistics, and so the
prediction accuracy can be evaluated. Considering the
important property of the D-optimal design explained
in Section 3, Umezu & Ninomiya [13] proposed a new
optimal design method which selects samples with the
maximum prediction instability measured by an entropy.
Using this method, we can select inputs by considering
its closeness to not only the estimated decision bound-
ary but also already sampled inputs. However, this can be
regarded as a method between the ASVM and the method
with sampling completely at random, and so it must be
inappropriate for our problem.
Hence, we consider a method which does not depend

on the estimated decision boundary. After sampling an
input uniformly at random from X and obtaining an out-
put according to the input, which is repeated till at least
one output with y = −1 is obtained, we consciously forget
the nonlinearity of our discriminant problem and conduct
a linear discriminant analysis. Let h̃(x) be the linear dis-
criminant function, and let D− = {x | h̃(x) < 0}. In
this paper, we consider a hyperplane which consists of the
points such that the distances from the centers of D and
of inputs with y = −1 are equal, and we define h̃(x) so
that {x | h̃(x) = 0} is the hyperplane. Because the sepa-
rated regions giving y = −1 more likely than not are not
large, not far from each other, and at the edge, it can be
expected thatmost of such regions are included inD− (see
the right in Fig. 1). Then we sample inputs uniformly at
random from X̃ ≡ D− ∩ X and obtain outputs according
to the inputs. By repeating this procedure, we can expect
to get samples from all the separated regions. In this situ-
ation, since the area ofD− is not large in comparison with
the area of D, we will be able to get inputs with y = −1
efficiently. Finally we recall the nonlinearity of our dis-
criminant problem, and then estimate the discriminant

function ŵ·φ(x) by applying the SVM. This procedure can
be summarized as in Table 1.

5 Simulation study
To compare “Linear discrimination”-based active learn-
ing with the SVM (LSVM) proposed in Section 4, the
method in Tong & Koller [12] (ASVM) and “Random
sampling” with the SVM (RSVM), we conduct a simu-
lation study in this section. In the RSVM, we sample
inputs fromX completely at randomwithout active learn-
ing and finally use the SVM to estimate the discrim-
inant function. Because we must apply these methods
many times in the simulation study, we set the dimen-
sion of inputs and the number of sampled inputs are
small.
Concretely speaking, first we produce 2,000 inputs with

a negative output by

x ∼ Mix(1/2,N(μ1,�1), N(μ2,�2)) ⇒ y = −1

and 98,000 inputs with a positive output by

x ∼ N(μ3,�3) ⇒ y = 1,

Table 1 Procedure in LSVM

1) For i = 1, 2, . . . ,N, sample xi uniformly at random from X , and
obtain yi ∈ {±1} according to xi .

2) Obtain a linear discriminant function h̃(x) such that {x | h̃(x) = 0}
becomes the hyperplane which is equidistant from the centers of
D and of inputs with y = −1.

3) Set X̃ = {x ∈ X | h̃(x) < 0}
4) For i = 1, 2, . . . ,M, sample x̃i uniformly at random from X̃ , and

obtain ỹi ∈ {±1} according to x̃i
5) Iterate 2) to 4) for K times

6) Estimate a discriminant function ŵ · φ(x) by SVM
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and pool them. Here, Mix(1/2,N(μ1,�1), N(μ2,�2))
means the mixture distribution of N(μ1,�1) and
N(μ2,�2) with the mixing rate 1 : 1. Letting R(θ) be
the two dimensional rotation matrix with the angle θ ,
we set

μ1 =
(
0
5

)
, �1 =

(
σ 2
1 0
0 σ 2

2

)

μ2 = R(θ)μ1, �2 = R(θ)�1R(θ)′

μ3 =
(
0
0

)
, �3 =

(
5 0
0 5

)

as the values of the parameters. The inputs with y = −1
form two groups and the angle θ indicates their distance.
Next we compare the methods by getting samples from
the pooled data. In every method, first we get 50 sam-
ples completely at random, and then we iterate 25 times of
samplings in which we get 10 samples at one time accord-
ing to the procedure of each method. That is, in Table 1
for the LSVM, we set N = 50,M = 10 and K = 25.
In Table 2, by each designed value of

(
θ , σ 2

1 , σ
2
2
)
, we

can check the transitions of FPRs (false positive rates)
caused by increasing the number of iterations of sampling,
where the FPR is defined by #{ i | ŵ·φ (xi) > 0, yi = −1}/#
{i | yi = −1}. Here we do not report about the FNRs
(false negative rates) because the FPR is more impor-
tant to be checked than the FNR in our problem and
because the FNRs for all methods were always very close
to one and almost the same values. The values in the table
are the averages and standard deviations of FPRs based
on 50 simulations for each method. In every method,
the FPR is decreasing when the number of iterations is
increased.
First, it can be seen in every case that the RSVM pro-

vides much higher values of FPRs than those of the LSVM
and the ASVM. This is because the RSVM can rarely get
samples with y = −1 unlike the other two methods. Next,
it can be seen by comparing the two methods that basi-
cally the LSVM is superior to the ASVMwhen the number
of iterations become large while the ASVM is superior to
the LSVMwhen it is small. This is because the ASVM can
quickly get samples with y = −1 close to the initially got-
ten sample with y = −1 but cannot get those far from
it. For the case where the two groups of the inputs with
y = −1 are close, e.g., θ = π/9, the ASVM has a possi-
bility of finding any of those, and so the two methods are
comparable. In addition, for the case where the two groups
are too far from each other, e.g., θ = 4π/9, even the LSVM
does not have a possibility of finding any of inputs with
y = −1, and so the superiority of the LSVM becomes
small. For the other cases, the LSVM is clearly better than
the ASVM.

Table 2 Transition of FPRs for simulated data

Number of iterations

θ Method 5 10 15 20 25

(a) Case of
(
σ 2
1 , σ

2
2

) = (0.1, 0.3)

π/9 LSVM 0.912 0.022 0.016 0.021 0.031

sd 0.188 0.020 0.007 0.011 0.014

ASVM 0.102 0.027 0.036 0.037 0.026

sd 0.132 0.017 0.019 0.016 0.009

RSVM 1.000 1.000 0.932 0.654 0.352

sd 0.000 0.001 0.169 0.332 0.299

2π/9 LSVM 0.994 0.360 0.068 0.043 0.045

sd 0.024 0.278 0.096 0.026 0.026

ASVM 0.540 0.503 0.503 0.504 0.504

sd 0.080 0.002 0.003 0.006 0.002

RSVM 1.000 1.000 0.988 0.943 0.805

sd 0.000 0.000 0.061 0.127 0.227

π/3 LSVM 0.979 0.439 0.085 0.033 0.027

sd 0.084 0.244 0.154 0.098 0.098

ASVM 0.532 0.502 0.503 0.503 0.505

sd 0.063 0.002 0.004 0.002 0.004

RSVM 1.000 1.000 0.998 0.969 0.833

sd 0.000 0.000 0.013 0.123 0.255

4π/9 LSVM 0.996 0.517 0.337 0.281 0.269

sd 0.028 0.177 0.227 0.250 0.247

ASVM 0.528 0.503 0.503 0.504 0.504

sd 0.037 0.003 0.003 0.003 0.003

RSVM 1.000 1.000 1.000 0.940 0.841

sd 0.000 0.000 0.000 0.178 0.239

(b) Case of
(
σ 2
1 , σ

2
2

) = (0.2, 0.2)

π/9 LSVM 0.787 0.032 0.027 0.028 0.029

sd 0.349 0.024 0.018 0.015 0.017

ASVM 0.083 0.028 0.031 0.026 0.018

sd 0.107 0.016 0.020 0.016 0.009

RSVM 0.900 0.900 0.850 0.663 0.286

sd 0.303 0.303 0.322 0.362 0.257

2π/9 LSVM 1.000 0.359 0.080 0.047 0.050

sd 0.003 0.280 0.109 0.038 0.041

ASVM 0.528 0.503 0.503 0.504 0.505

sd 0.043 0.002 0.004 0.003 0.003

RSVM 1.000 1.000 0.994 0.941 0.798

sd 0.000 0.000 0.037 0.129 0.262

π/3 LSVM 1.000 0.506 0.080 0.028 0.019

sd 0.000 0.291 0.162 0.098 0.070

ASVM 0.524 0.502 0.502 0.503 0.503

sd 0.037 0.001 0.002 0.003 0.003

RSVM 1.000 1.000 0.992 0.946 0.791

sd 0.000 0.000 0.049 0.133 0.261
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Table 2 Transition of FPRs for simulated data (Continued)

4π/9 LSVM 0.990 0.512 0.239 0.192 0.182

sd 0.052 0.180 0.228 0.244 0.241

ASVM 0.535 0.503 0.502 0.503 0.504

sd 0.053 0.003 0.002 0.002 0.002

RSVM 1.000 1.000 1.000 0.978 0.821

sd 0.000 0.000 0.000 0.072 0.232

(c) Case of
(
σ 2
1 , σ

2
2

) = (0.3, 0.1)

π/9 LSVM 0.901 0.046 0.033 0.030 0.024

sd 0.221 0.034 0.015 0.014 0.011

ASVM 0.061 0.029 0.022 0.016 0.011

sd 0.060 0.018 0.011 0.008 0.005

RSVM 1.000 1.000 0.941 0.649 0.401

sd 0.000 0.000 0.159 0.338 0.347

2π/9 LSVM 0.970 0.333 0.055 0.042 0.065

sd 0.096 0.236 0.061 0.017 0.029

ASVM 0.509 0.476 0.475 0.481 0.482

sd 0.046 0.111 0.110 0.091 0.092

RSVM 1.000 1.000 0.995 0.943 0.834

sd 0.000 0.000 0.032 0.138 0.255

π/3 LSVM 0.991 0.471 0.082 0.030 0.034

sd 0.061 0.245 0.137 0.068 0.068

ASVM 0.513 0.503 0.502 0.504 0.503

sd 0.017 0.002 0.001 0.003 0.004

RSVM 1.000 1.000 1.000 0.944 0.827

sd 0.000 0.000 0.000 0.157 0.253

4π/9 LSVM 0.991 0.493 0.241 0.179 0.159

sd 0.042 0.200 0.237 0.235 0.227

ASVM 0.531 0.504 0.503 0.503 0.503

sd 0.075 0.002 0.002 0.002 0.002

RSVM 1.000 1.000 0.991 0.971 0.852

sd 0.000 0.000 0.061 0.101 0.220

6 Real data analysis
In this section, we compare the methods through apply-
ing them to some trial data which is used in a real product
manufacturing. The data consists of 97,740 samples with
y = 1 and 2,260 samples with y = −1, and the dimen-
sion p of the inputs is 18. As in the situation we treated
until now, the inputs with y = −1 form several groups at
the edge of the domain D. Note that we know all values
of the outputs because this data is for trial. Using these
known values, we can estimate a good discriminant func-
tion without active learning, but here we suppose to know
only the values of outputs gotten by sampling. Needless to
say, it is because we look ahead to apply the methods to
non-trial data.

In every method, first we get 500 samples completely
at random, and then we iterate 200 times of samplings
in which we get 50 samples at one time according to the
procedure of each method. That is, in Table 1 for the
LSVM, we set N = 500, M = 50 and K = 200. In
Fig. 2, we plot the transition of the FPR for each method,
which is measured by making test data from non-sampled
data with y = −1. It can be seen that the values of
the FPR for the LSVM are always smaller than those of
the ASVM and become stable after about 50 times iter-
ations while those of the ASVM are decreasing slowly.
About the RSVM, the values of the FPR become tempo-
rally smaller than those of the LSVM, but it will be by
accident because the values considerably fluctuate after
that. Moreover, the RSVM is superior to the ASVM in this
case. It may be because that there are too many groups of
the inputs with y = −1 to deal with by the ASVM. Actu-
ally the values do not become stable even after 100 times
iterations.

7 Evaluation of defect rate
While efficient estimation of the discriminant function
for a defect was discussed until now, it is often the case
actually in product manufacturing that the estimation of
its defect rate has more concern. Then we consider to
evaluate

E[ y = −1]=
∫

ρ(x)f (x)dx, (4)

where f (x) is the probability density function of x, and
ρ(x) is the probability of being y = −1 at x.

Fig. 2 Transition of FPRs for real data. The horizontal axis indicates the
number of sampling iterations and the vertical axis indicates the FPR
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First we model the local defect rate by

ρ(x) = exp(aŵ · φ(x) + b)
1 + exp(aŵ · φ(x) + b)

(5)

using the discriminant function ŵ · φ(x) obtained by the
SVM (e.g., Platt [7]). Here a and b are unknown param-
eters, and we estimate them by the maximum likelihood
method under the setting where yi is an independent
sample from the Bernoulli distribution Be(ρ(xi)). We sub-
stitute the maximum likelihood estimators â and b̂ for the
a and b in the right-hand side of (5), and we denote the
substituted right-hand side by ρ̂(x) as an evaluated local
defect rate.
From this, we can provide the value of the defect rate by

evaluating the multiple integration in (4) numerically, but
it is almost impossible if the dimension of x is large. Then,
by simulating {x̃i | i = 1, 2, . . . , ñ} from the distribution
f (x) at random, we consider to use Monte Carlo integra-
tion, that is, to provide

∑ñ
i=1 ρ̂(x̃i)/ñ. However, a problem

remains. The defect rate is tiny in general, i.e., ρ̂(x) ≈ 0 for
almost all x, and so we cannot provide an accurate eval-
uation of the defect rate even if we simulate huge size of
{x̃i | i = 1, 2, . . . , ñ}.
To overcome this difficulty, we try to simulate {x̃i | i =

1, 2, . . . , ñ} from the region where ρ̂(x) is large, and
then we evaluate the defect rate efficiently by an impor-
tance sampling. Concretely speaking, letting μ̂ and �̂ be
respectively the sample mean vector and sample variance-
covariance matrix for a set of the inputs with a defect
{xi | yi = −1}, we simulate {x̃i | i = 1, 2, . . . , ñ} from
the Gaussian distribution N(μ̂, �̂) at random. Then we
evaluate the defect rate by

1
ñ

ñ∑

i=1

f (x̃i)
g(x̃i)

ρ̂(x̃i), (6)

where g(x) is the probability density function of N(μ̂, �̂).
From the law of large numbers, this converges to our
desired expectation in (4).
For the data treated in Section 6, we conducted this

defect rate evaluation after 100 iterations of samplings.
The estimates of a and bwere−3.88 and 0.58, respectively.
In Fig. 3, we can check the transition of the evaluations
in (6) caused by increasing ñ. The evaluations become sta-
ble when ñ is close to 106, and as a result we found that
the defect rate is about 1.2 × 10−6.

8 Concluding remarks
In this paper, under the situation where various vari-
ables may cause a defect, we have treated a problem to
actively estimate the discriminant function which deter-
mines the probability of causing the defect. And then, we
have discovered that even the ASVM, the latest active
learning method in the nonlinear discriminant analysis,

Fig. 3 Transition of estimates for the defect rate. The horizontal axis
indicates ñ and the vertical axis indicates the evaluation in (6)

does not work well for the case where the nonlinear-
ity of the discriminant function is strong and the region
producing the defect more likely than not is separated.
To overcome this difficulty, we have proposed the LSVM
which uses a linear discriminant method by consciously
forgetting the nonlinearity of the discriminant function
at the sampling stage in active learning. In numerical
studies, we have simulated the cases where the region
is actually separated, and then it has been checked that
the LSVM is superior to the ASVM for such cases. Also
it has been checked through real data analysis that the
error rate for the LSVM is smaller than that for the
ASVM and becomes stable quickly. Moreover, we have
proposed a method to efficiently estimate the defect
rate by use of the importance sampling after obtaining
the estimated discriminant function by the LSVM. We
have used a single Gaussian distribution for the impor-
tance sampling, but we may be able to evaluate it faster
by using a multi-modal distribution such as a Gaussian
mixture.
The above-mentioned case is natural for the defect rate

evaluation problem, and so we can say that our simple
active learning method is useful in product manufactur-
ing, that is, valuable from engineering viewpoint. On the
other hand, brushing up the method is our important
future theme in order to cope with the case of existing
more variables. One idea is to make a hybrid-type active
learning method by combining the LSVM and the ASVM
so that the weak and strong points of the ASVM are
respectively overcome and kept.
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