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Abstract

We study a hidden Markov process which is the result of a transmission of the binary symmetric Markov source over
the memoryless binary symmetric channel. This process has been studied extensively in Information Theory and is
often used as a benchmark case for the so-called denoising algorithms. Exploiting the link between this process and
the 1D Random Field Ising Model (RFIM), we are able to identify the Gibbs potential of the resulting Hidden Markov
process. Moreover, we obtain a stronger bound on the memory decay rate. We conclude with a discussion on
implications of our results for the development of denoising algorithms.
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1 Introduction
We study the binary symmetric Markov source over the
memoryless binary symmetric channel. More specifically,
let {Xn} be a stationary two-state Markov chain with
values {±1}, and

P(Xn+1 �= Xn) = p,

where 0 < p < 1; denote by P = ( px,x′) =(
1 − p p
p 1 − p

)
the corresponding transition probability

matrix. Note that π = ( 1
2 ,

1
2
)
is the stationary initial

distribution for this chain.
The binary symmetric channel will be modelled as a

sequence of Bernoulli random variables {Zn} with
PZ(Zn = −1) = ε, PZ(Zn = 1) = 1−ε, ε ∈ (0, 1).

Finally, put

Yn = Xn · Zn (1.1)

for all n. The process {Yn} is a Hidden Markov process,
because Yn ∈ {−1, 1} is chosen independently for any
n from an emission distribution πXn on {−1, 1}: π1 =
(ε, 1−ε) and π−1 = (1−ε, ε). More generally, the Hidden
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Markov Processes are random functions of discrete-time
Markov chains, where the value Yn is chosen according
to the distribution which depends on the value Xn = xn
of the underlying Markov chain, independently for any
n. The applications of Hidden Markov processes include
automatic character and speech recognition, information
theory, statistics and bioinformatics, see [4, 13]. The par-
ticular example (1.1) we consider in the present paper is
probably one of simplest examples, and often used as a
benchmark for testing algorithms.
In particular, this example has been studied rather

extensively in connection to computation of entropy of the
output process {Yn}, see e.g., [8–10, 12].
The law Q of the process {Yn} is the push-forward of

P × PZ under ψ : {−1, 1}Z × {−1, 1}Z �→ {−1, 1}Z, with
ψ((xn, zn)) = xn · zn. We write Q = (P × PZ) ◦ ψ−1. For
every m ≤ n, and ynm := (ym, . . . , yn) ∈ {−1, 1}n−m+1, the
measure of the corresponding cylindric set is given by
Q
(
ynm

)
:= Q(Ym = ym, . . . ,Yn = yn)

=
∑

xnm,znm∈{−1,1}n−m+1

P
(
xnm

)
PZ

(
znm

) n∏
k=m

I
[
yk =xk · zk

]

=
∑

xnm∈{−1,1}n−m+1

1
2

n−1∏
i=m

pxi,xi+1 · ε#{i∈[m,n]:xiyi=−1}

× (1 − ε)#{i∈[m,n]:xiyi=1}.
(1.2)
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Two particular cases are easy to analyze. If p = 1
2 , then{Xn} is a sequence of independent identically distributed

random variables with P(Xn = −1) = P(Xn = +1) =
1
2 , and {Yn} has the same distribution. If ε = 1

2 , then the
formula above implies that

Q
(
ynm

) =
∑

xnm∈{−1,1}n−m+1

1
2

n−1∏
i=m

pxi,xi+1

(
1
2

)n−m+1

=
(
1
2

)n−m+1
,

and hence again, {Yn} is a sequence of independent ran-
dom variables withQ (Yn = −1) = Q (Yn = +1) = 1

2 .
The paper is organizes as follows. In Section 2 we exploit

methods of Statistical Mechanics to derive expressions for
probabilities of cylindric events (1.2). In Section 3, analyz-
ing derived expressions, we show that the measure Q has
nice thermodynamic properties; in particular, it falls into
the class of g-measures with exponential decay of varia-
tion (memory decay). We also obtain an novel estimate of
the decay rate, which is stronger than estimates derived
in previous works. In Section 4 we study two-sided con-
ditional probabilities and show that Q is in fact a Gibbs
state in the sense of Statistical Mechanics. We also dis-
cuss well-known denoising algorithm DUDE, and suggest
that the Gibbs property of Q explains why DUDE per-
forms so well in this particular example. Furthermore, we
argue that the development of denoising algorithsms, rely-
ing on thermodynamic Gibbs ideas can result in a superior
performance.

2 Random field Isingmodel
It was observed in [18] that the probability Q(ym, . . . , yn)
of a cylindric event

{
Ym = ym, . . . ,Yn = yn

}
, m ≤ n, can

be expressed via a partition function of a random field
Ising model. We exploit this observation further. Assume
p, ε ∈ (0, 1), and put

J = 1
2
log

1 − p
p

, K = 1
2
log

1 − ε

ε
.

Then for any (ym, . . . , yn) ∈ {−1, 1}n−m+1, expression
for the cylinder probability (1.2) can be rewritten as

Q(ym, . . . , yn) = cJ
λn−m+1
J ,K

∑
xnm∈{−1,1}n−m+1

exp
(
J
n−1∑
i=m

xixi+1 + K
n∑

i=m
xiyi

)
,

where

cJ = cosh(J), λJ ,K = 2 (cosh(J + K) + cosh(J − K))

= 4 cosh(J) cosh(K).

The non-trivial part of the cylinder probability is the
sum over all hidden configurations (xm, . . . , xn):

Zm,n
(
ynm

)
:=

∑
xnm∈{−1,1}n−m+1

exp
(
J
n−1∑
i=m

xixi+1 + K
n∑

i=m
xiyi

)

is in fact the partition function of the Ising model with the
signs of the external random fields given by yi’s. Apply-
ing the recursive method of [14], the partition function
can be evaluated in the following fashion [1]. Consider the
following functions

A(w) = 1
2
log

cosh(w + J)
cosh(w − J)

,

B(w) = 1
2
log [4 · cosh(w + J)cosh(w − J)]

= 1
2
log

[
e2w + e−2w + e2J + e−2J] .

One readily checks that if s = ±1, then for all w ∈ R

exp (sA(w) + B(w)) = 2 cosh(w + sJ). (2.1)

Now the partition function can be evaluated by sum-
ming the right-most spin. Namely, suppose m < n, ynm ∈
{−1, 1}n−m+1, then

Zm,n
(
ynm

) =
∑

xn−1
m ∈{−1,1}m−n

exp
(
J
n−2∑
i=m

xixi+1 + K
n−1∑
i=m

xiyi

)

×
∑

xn∈{−1,1}
exn(Jxn−1+Kyn)

=
∑

xn−1
m ∈{−1,1}m−n

exp
(
J
n−2∑
i=m

xixi+1 + K
n−1∑
i=m

xiyi

)

× {
2 cosh( Jxn−1 + Kyn)

}

=
∑

xn−1
m ∈{−1,1}m−n

exp
(
J
n−2∑
i=m

xixi+1 + K
n−1∑
i=m

xiyi

)

exp
(
xn−1A

(
w(n)
n

)
+ B

(
w(n)
n

))

where

w(n)
n = Kyn.
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Hence,

Zm,n
(
ynm

) =
∑

xn−1
m ∈{−1,1}m−n

exp

⎛
⎜⎜⎜⎜⎝J

n−2∑
i=m

xixi+1

+K
n−2∑
i=m

xiyi + xn−1
(
Kyn−1 + A

(
w(n)
n
)

︸ ︷︷ ︸
w(n)
n−1

)
⎞
⎟⎟⎟⎠

× exp
(
B
(
w(n)
n

))
,

and thus the new sum has exactly the same form, but
instead of Kyn−1, we now have w(n)

n−1 = Kyn−1 + A
(
w(n)
n
)
.

Continuing the summation over the remaining right-most
x-spins, one gets

Zm,n
(
ynm

) = 2 cosh
(
w(n)
m

)
exp

( n∑
i=m+1

B
(
w(n)
i

))
,

where

w(n)
i = Kyi + A

(
w(n)
i+1

)
for every i < n,

equivalently, since A(0) = 0, we can define

w(n)
i = 0 ∀i > n, and w(n)

i = Kyi + A
(
w(n)
i+1

)
∀i ≤ n.

Therefore, we obtain the following expressions for the
cylinder and conditional probabilities

Q
(
yn0
) = cJ

λn+1
J ,K

cosh
(
w(n)
0

)
exp

( n∑
i=1

B
(
w(n)
i

))
,

Q
(
y0|yn1

) = 1
λJ ,K

cosh
(
w(n)
0

)
exp

(
B
(
w(n)
1

))

cosh
(
w(n)
1

) .

(2.2)

3 Thermodynamic formalism
Let � = AZ+ , where A is a finite alphabet, be the space of
one-sided infinite sequences ω = (ω0,ω1, . . .) in alphabet
A ( ωi ∈ A for all i). We equip � with the metric

d(ω, ω̃) = 2−k(ω,ω̃),

where k
(
ω, ω̃

) = 1 if ω0 �= ω̃0, and k
(
ω, ω̃

) = max{k ∈
N : ωi = ω̃i ∀i = 0, . . . , k − 1}, otherwise. Denote by
S : � → � the left shift:

(Sω)i = ωi+1 for all i ∈ Z+.

Borel probability measure P is translation invariant if

P(S−1C) = P(C)

for any Borel event C ⊆ �.
Let us recall the following well-known definitions:

Definition 3.1. Suppose P is a fully supported transla-
tion invariant measure on � = AZ+ , where A is a finite
alphabet.
(i) The measure P is called a g-measure, if for some

positive continuous function g : � → (0, 1) satisfying the
normalization condition∑

ω̄0∈A
g (ω̄0,ω1,ω2, . . .) = 1

for all ω = (ω0,ω1, . . .) ∈ �, one has

P(ω0|ω1,ω2, . . .) = g(ω0,ω1, . . .)

for P-a.a. ω ∈ �.
(ii) The measure P is Bowen-Gibbs for a continuous

potential φ : � → R, if there exist constants P ∈ R and
C ≥ 1 such that for all ω ∈ � and every n ∈ N

1
C

≤ P({ω̃ ∈ � : ω̃0 = ω0, . . . ω̃n−1 = ωn−1})
exp ((Snφ)(ω) − nP)

≤ C,

where (Snφ)(ω) = ∑n−1
k=0 φ(Skω).

(iii) The measure P is called an equilibrium state for
continuous potential φ : � → R, if P attains maximum of
the following functional

h(P) +
∫

φ dP = sup
P̃∈M∗

1(�)

[
h(P̃) +

∫
φ dP̃

]
, (3.1)

where h(P) is the Kolmogorov-Sinai entropy of P and the
supremum is taken over the set M∗

1(�) of all translation
invariant Borel probability measures on �.

It is known that every g-measure P is also an equilibrium
state for log g; and that every Bowen-Gibbs measure P for
potential φ is an equilibrium state for φ as well.

Theorem 3.1. Suppose p, ε ∈ (0, 1). Then the measure
Q = Qp,ε on {−1, 1}Z+ (c.f., (2.2)) is a g-measure. More-
over, the corresponding function g has exponential decay of
variation: define the n-th variation of g by

varn(g) := sup
y,ỹ:yn−1

0 =ỹn−1
0

∣∣g(y) − g(ỹ)
∣∣, n ≥ 1,

then

ρ(p, ε) = lim sup
n→∞

(
varn(g)

) 1
n < 1. (3.2)

Furthermore, ρ(p, ε) = 0 if p = 1
2 or ε = 1

2 ; for all p �= 1
2

ρ(p, ε) < |1 − 2p|. (3.3)

Finally, the measure Q is also a Bowen-Gibbs measure
for a Hölder continuous potential φ : {−1, 1}Z+ → R.

The result of Theorem 3.1 is actually true in much
greater generality: namely, for distributions of functions of
Markov chains {Yn}, where the underlying Markov chain
{Xn} has strictly positive transition probability matrix P,
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see [15] for review of several results of this nature. How-
ever, example considered in the present paper is rather
exceptional since one is able to identify the g-function and
the Gibbs potential φ explicitly. Another interesting ques-
tion is the estimate of the decay rate ρ. In [15] a number
of previously known estimates of the rate of exponen-
tial decay in (3.3) have been compared; the best known
estimate for ρ

ρ ≤ |1 − 2p|
is due to [8] and [7]. Quite surprisingly this estimate does
not depend on ε, and in fact, it was conjectured in [15]
that the estimate could be improved, e.g., by incorporating
dependence on ε. The proof of Theorem 3.1 shows that
this is indeed the case and one obtains sharper estimate
(3.3).
Let us start by introducing some notation and proving

a technical result. Suppose p, ε ∈ (0, 1), and p �= 1
2 and

ε �= 1
2 . Fix y = (y0, y1, . . .) ∈ {−1, 1}Z+ . For every n ∈ Z+,

define the sequence w(n)
i = w(n)

i (y), i ∈ Z+, as follows:

w(n)
i = 0, for every i ≥ n + 1,

w(n)
i = Kyi + A

(
w(n)
i+1

)
, for i ≤ n.

If we introduce maps F−1, F1 : R → R, given by

F−1(w) = −K + A(w), F1(w) = K + A(w),

then for i ≤ n,

w(n)
i = w(n)

i (y) = Fyi(Fyi+1(· · · (Fyn(0)) · · · ))
= Fyi ◦ Fyi+1 ◦ · · · Fyn(0).

(3.4)

As we will show the maps F−1, F1 are strict contrac-
tions, and as a result, for every i, the sequence

{
w(n)
i

}
is

converging as n → ∞; in fact, with exponential speed.

Lemma 3.2. For every i ∈ Z+ and all y ∈ {−1, 1}Z+ one
has

lim
n→∞w(n)

i (y) =: wi(y).

Moreover, there exist constants 
 ∈ (0, 1) and C > 0,
both independent of y, such that

∣∣∣w(n)
i (y) − wi(y)

∣∣∣ ≤ C
n−i (3.5)

for all n ≥ i. Furthermore, wi(y) = w0(Siy) for all i ∈ Z+
and y, and w0 : {−1, 1}Z+ → R (and hence every wi) is
Hölder continuous

|w0(y) − w0(ỹ)| ≤ C′ (d(y, ỹ)
)θ

for some C′, θ > 0 and all y, ỹ ∈ {−1, 1}Z+ .

Proof. Suppose i ≤ n ≤ m. Then
∣∣∣w(n)

i − w(m)
i

∣∣∣ =
∣∣∣A (

w(n)
i+1

)
− A

(
w(m)
i+1

)∣∣∣
≤
∣∣∣w(n)

i+1 − w(m)
i+1

∣∣∣ · sup
w

∣∣∣∣dAdw
∣∣∣∣ .

One has

dA
dw

= sinh(2J)
cosh(2J) + cosh(2w)

,

and hence


 := sup
w

∣∣∣∣dAdw
∣∣∣∣ =

∣∣∣∣ sinh(2J)
cosh(2J) + 1

∣∣∣∣ = |1− 2p| < 1. (3.6)

Combined with the fact that for all i ∈ Z+∣∣∣w(m)
i

∣∣∣ =
∣∣∣Kyi+A

(
w(m)
i+1

)∣∣∣ ≤ |K | + |arctanh(1 − 2p)|
≤ |K | + |J| =: C1,

one therefore concludes that for i ≤ n ≤ m
∣∣∣w(n)

i − w(m)
i

∣∣∣ ≤ 
n−i+1
∣∣∣w(n)

n+1 − w(m)
n+1

∣∣∣ = 
n−i+1
∣∣∣w(m)

n+1

∣∣∣
≤ C1


n−i+1.

Hence, limn→∞ w(n)
i =: wi exists and

∣∣∣w(n)
i − wi

∣∣∣ ≤
∞∑

m=n

∣∣∣w(m)
i − w(m+1)

i

∣∣∣ ≤ C1

∞∑
m=n


m−i+1

= C1
1 − 



n−i+1 =: C
n−i+1.

From representation (3.4) it is clear that for n ≥ i,

w(n)
i (y) = w(n−i)

0 (Siy),

and hence wi(y) = w0(Siy).
Suppose y = (y0, y1, · · · ), ỹ = (ỹ0, ỹ1, · · · ) ∈ {−1, 1}Z+

are such that d(y, ỹ) = 2−k for some k ∈ N, i.e., y0 =
ỹ0, . . ., yk−1 = ỹk−1. Then

|w0(y) − w0(ỹ)| = ∣∣Fy0 ◦ . . . ◦ Fyk−1 (wk(y)) − Fy0 ◦ . . . ◦ Fyk−1 (wk(ỹ))
∣∣

≤ sup
w∈R

∣∣(Fy0 ◦ . . . ◦ Fyk−1 )
′(w)

∣∣ · |wk(y) − wk(ỹ)|

≤
(
sup
w∈R

|A′(w)|
)k

· (2C1) = 2C1

k ,

and hence w0 : {−1, 1} → R is Hölder continuous.

The estimate of a contraction rate in the Lemma above
can be improved. If p = 1

2 , then A(w) ≡ 0, and hence
w(n)
i ≡ Kyi for all n ≥ i. We may assume that p �= 1

2 . Let
us also assume that ε �= 1

2 , i.e., K �= 0.
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Let us now consider second iterations:∣∣∣w(n)
i − w(m)

i

∣∣∣ =
∣∣∣A (

w(n)
i+1

)
− A

(
w(m)
i+1

)∣∣∣ =
∣∣∣A (

Kyi+1 + A
(
w(n)
i+2

))

−A
(
Kyi+1 + A

(
w(m)
i+2

))∣∣∣
≤
(
sup
w

|A′(K + A(w))A′(w)|
) ∣∣∣w(n)

i+2 − w(m)
i+2

∣∣∣
=: ρ(2)

∣∣∣w(n)
i+2 − w(m)

i+2

∣∣∣ .
We are going to show that for p �= 1

2 and all ε �= 1
2 , one

has

ρ(2) = sup
w

|A′(K + A(w))A′(w)| < (1 − 2p)2. (3.7)

Firstly, note that

|A′(K + A(w))A′(w)|

= sinh2(2J)
(cosh(2J) + cosh(2w))(cosh(2J) + cosh(2K + 2A(w)))

= (1 − 2p)2

(α + (1 − α) cosh(2K + 2A(w))) · (α + (1 − α) cosh(2w))
,

(3.8)

where α = (1 − p)2 + p2, 1 − α = 2p(1 − p). Let
 > 0 be sufficiently small so that for all w ∈[−,]
one has cosh(2K + 2A(w)) > cosh(K), and hence for all
w ∈ [−,]

|A′(K + A(w))A′(w)| ≤ (1 − 2p)2

(α + (1 − α) cosh(K)) · 1 < (1 − 2p)2.

For w �∈[−,], one has

|A′(K + A(w))A′(w)| ≤ (1 − 2p)2

1 · (α + (1 − α) cosh())

< (1 − 2p)2.

Hence,

ρ(2) = min
{

(1 − 2p)2

(α + (1 − α) cosh(K))
,

(1 − 2p)2

(α + (1 − α) cosh())

}

< (1 − 2p)2,

and thus (3.5) holds for 
̄ = √
ρ(2) < |1 − 2p| and some

constant C̃ > 0. In particular, we are now able conclude
that

|w0(y) − w0(ỹ)| ≤ C2
̄
k(y,ỹ) = C2

(
d(y, ỹ)

)θ ,
θ = − log2 
̄ > 0.

(3.9)

Even sharper bounds can be achieved by studying
minimum of the denominator in (3.8) or higher interates
of F ’s.

Proof of Theorem 3.1. The cases p = 1
2 or ε = 1

2 are
obvious: in these cases, Q is the Bernoulli

( 1
2 ,

1
2
)
-measure

on {−1, 1}Z+ , and hence ρ(p, ε) = 0. Thus we will assume
that p, ε �= 1

2 .

To show that Q is a g-measure it is sufficient to
show that conditional probabilities Q

(
y0|yn1

)
converge

uniformly as n → ∞. Given that

Q
(
y0|yn1

) = 1
λJ ,K

cosh
(
w(n)
0

)
exp

(
B
(
w(n)
1

))

cosh
(
w(n)
1

) , (3.10)

and using the result of Lemma 3.2: w(n)
i (y) ⇒ wi(y) as

n → ∞, we obtain uniform convergence of conditional
probabilities, and hence, Q is a g-measure with g given by

g(y) = 1
λJ ,K

cosh(w0(y)) exp
(
B(w1(y))

)
cosh

(
w1(y)

) . (3.11)

Taking into account that w0, w1 = w0 ◦ S are Hölder
continuous functions satisfying (3.9), and that cosh, exp,
and B are smooth functions, we can conclude that g is also
Hölder continuous with the same decay of variation:

varn(g) = sup
y,ỹ:yn−1

0 =ỹn−1
0

|g(y) − g(ỹ)|

≤ C3|w1(y) − w1(ỹ)| ≤ C4
̄
n−1,

for some C3 > 0 (C4 = C2C3, c.f., (3.9)), and hence

ρ(p, ε) = lim sup
n→∞

(
varn(g)

) 1
n ≤ 
̄ < |1 − 2p|.

Let us introduce the following functions: for y ∈
{−1, 1}Z+ , put

φ(y) = B(w0(y)), h(y) = cosh(w0(y)) exp
(−B(w0(y))

)
.

Taking into account that w1(y) = w0(Sy), one has

g(y) = eφ(y)

λJ ,K

h(y)
h(Sy)

.

Since every g-measure is also an equilibrium state for
log g, we conclude that Q is an equilibrium state for

φ̃(y) = φ(y) + log h(y) − log h(Sy) − log λJ ,K .

The difference φ̃(y) − φ(y) has a very special form: it is
a sum of a so-called coboundary (log h(y)− log h(Sy)) and
a constant (− log λJ ,K ). Two potentials, whose difference
is of a such form, have identical sets of equilibrium states.
The reason is that for any translation invariant measure
Q

′ one has
∫ (

log h(y) − log h(Sy) − log λJ ,K
)
dQ′ = − log λJ ,K

= const.
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Therefore, ifQ′ achievesmaximum in the righthand side
of (3.1) for φ̃, then Q

′ achieves maximum for φ as well.
Thus Q is also an equilibrium state for

φ(y) = B(w0(y)) = 1
2
log

[
4 sinh2(w0(y)) + 1

p(1 − p)

]
.

Any equilibrium measure for a Hölder continuous
potential φ is also a Bowen-Gibbs measure [3]. In our par-
ticular case, direct proof of the Bowen-Gibbs property for
Q is straightforward. Indeed, using the result of (2.2) and
the notation introduced above, for every y = (y0, y1, . . .)
one has

Q
(
yn0
) = cJ

λn+1
J ,K

exp
( n∑

i=1
B
(
w(n)
i (y)

))
cosh

(
w(n)
0 (y)

)

=
cJ · cosh

(
w(n)
0 (y)

)
exp(B(w0(y)))

exp
( n∑

i=1

[
B
(
w(n)
i (y)

)
−B(wi(y))

])

× exp
( n∑

i=0
B(wi(y)) − (n + 1) log λJ ,K

)
.

Therefore, for P = log λJ ,K ,

Q
(
yn0
)

exp
(
(Sn+1φ)(y) − (n + 1)P

) =
cJ · cosh

(
w(n)
0 (y)

)
exp(B(w0(y)))

×

exp
( n∑
i=1

[
B
(
w(n)
i (y)

)
−B(wi(y))

])

It only remains to demonstrate that the right hand side
is uniformly bounded (both in n and y = (y0, y1, . . .)) from
below and above by some positive constants C,C, respec-
tively. Indeed, since p, ε ∈ (0, 1), I = [−|K | − |J|, |K | + |J|]
is a finite interval, by the result of the previous Lemma,
w(n)
i (y) ∈ I for all i and n. Using (3.5), one readily checks

that the following choice of constants suffices:

C = cJ
supw∈I cosh(w)

infw∈I exp(B(w))
exp

(
C

1 − 

sup
w∈I

∣∣∣∣dBdw
∣∣∣∣
)

< ∞,

C = cJ
infw∈I cosh(w)

supw∈I exp(B(w))
exp

(
− C
1 − 


sup
w∈I

∣∣∣∣dBdw
∣∣∣∣
)

> 0.

We complete this section with a curious continued
fraction representation of the g-function (3.11).

Proposition 3.3. For every y = (y0, y1, . . .) ∈ {−1, 1}Z+ ,
one has

2g(y) = a1 − b1

a2 − b2

a3 − b3
a4 − . . .

(3.12)

where for i ≥ 1

qi = (1 − 2p)yi−1yi, ai = 1 + qi, bi = 4ε(1 − ε)qi.

Proof. Using elementary transformations, one can show
that for every y = (y0, y1, . . .) ∈ {−1, 1}Z+ one has

g(y) = 1
λJ ,K

cosh(w0(y))
cosh(w1(y))

exp
(
B(w1(y))

)

= 1
2

+ 1
2
(1 − 2p)(1 − 2ε)y0 tanh(w1(y)).

(3.13)

Since for all w ∈ R

tanh(A(w)) = tanh(J) tanh(w) = (1 − 2p) tanh(w),

for every i ∈ Z+, one has

tanh(wi) = tanh(Kyi) + tanh(A(wi+1))

1 + tanh(Kyi) · tanh(A(wi+1))

= (1 − 2ε)yi + (1 − 2p) tanh(wi+1)

1 + (1 − 2ε)(1 − 2p)yi tanh(wi+1)

= yi
(1 − 2ε) + (1 − 2p)yi tanh(wi+1)

1 + (1 − 2ε)(1 − 2p)yi tanh(wi+1)
.

Therefore, if we let zi = (1 − 2p)(1 − 2ε)yi−1 tanh(wi),
i ∈ N, then

zi = (1 − 2p)yi−1yi − 4ε(1 − ε)(1 − 2p)yi−1yi
1 + zi+1

= qi − bi
1 + zi+1

.

Since g(y) = 1
2 + 1

2z1, we obtain the continued fraction
expansion (3.12).

4 Two-sided conditional probabilities and
denoising

In the previous section we established that Q is a Bowen-
Gibbs measure. The notion of a Gibbs measure originates
in Statistical Mechanics, and is not equivalent to the
Bowen-Gibbs definition. In Statistical Mechanics, one is
interested in two-sided conditional probabilities

Q

(
y0|y−1−m, yn1

)
or Q(y0|y<0, y>0) := Q

(
y0|y−1−∞, y∞

1

)
.

The method of Section 2 can be used to evaluate
conditional probabilities Q

(
y0|y−1−m, yn1

)
, m, n > 0 for

y = (. . . , y−1, y0, y1, . . .) ∈ {−1, 1}Z. Indeed,
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Q

(
y0|y−1−m, yn1

)
=

Q

(
y−1−m, y0, yn1

)

Q

(
y−1−m, y0, yn1

)
+ Q

(
y−1−m, ȳ0, yn1

) ,

where ȳ0 = −y0. We can evaluate

Q(y−m, . . . , y−1, y0, y1, . . . , yn)

= cJ
λn+m+1
J ,K

∑
xn−m∈{−1,1}n+m+1

exp
(
J

n−1∑
i=−m

xixi+1 + K
n∑

i=−m
xiyi

)

= cJ
λn+m+1
J ,K

Z−m,n
(
yn−m

)
,

by first summing over spins on the right: xn, . . . , x1, and
then summing over spins on the left: x−m, . . . , x−1. One
has

Z−m,n
(
yn−m

) =
∑

x−m ,...,x0
exp

(
J

−1∑
i=−m

xixi+1+K
0∑

i=−m
xiyi + x0A

(
w(n)
1

))

exp
( n∑

i=1
B
(
w(n)
i

))

= exp

⎛
⎝ −1∑

j=−m
B
(
w(−m)
j

)⎞⎠ 2 cosh
(
w(−m,n)
0

)

exp
( n∑

i=1
B
(
w(n)
i

))

where now w(−m)
−m = Ky−m,

w(−m)
j+1 = Kyj+1 + A

(
w(−m)
j

)
, j = −m, . . . ,−2,

and

w(−m,n)
0 = Ky0 + A

(
w(−m)

−1

)
+ A

(
w(n)
1

)
.

Therefore,

Again, given this expression, one easily establishes uni-
form convergence and existence of the limits,

Q

(
y0|y−1−∞, y∞

1

)
= lim

m,n→∞Q

(
y0|y−1−m, yn1

)
.

Thus the two sided conditional probabilities are also reg-
ular, c.f. Theorem 3.1.

4.1 Denoising
Reconstruction of signals corrupted by noise during the
transmission is one of the classical problems in Informa-
tion Theory. Suppose we observe a sequence {yn}, n =
1, . . . ,N , given by (1.1), i.e.,

yn = xn · zn.
where {xn} is some unknown realisation of the Markov
chain, and {zn} is unknown realisation of the Bernoulli
sequence {Zn}. The natural question is, given the observed
data yN = (y1, . . . , yN ), what is the optimal choice of
X̂n = X̂n

(
yN

)
– the estimate of Xn, such that the empirical

zero-one loss (bit error rate)

LN = 1
N

N∑
n=1

I

[
X̂n �= xn

]

is minimal. The corresponding standard maximum a pos-
teriori probability (MAP) estimator (denoiser) is given
by

X̂n = X̂n (yN )

=
{−1, if P

[
Xn = −1 |YN = yN1

] ≥ P
[
Xn = 1 |YN = yN1

]
,

+1, if P
[
Xn = −1 |YN = yN1

]
< P

[
Xn = 1 |YN = yN1

]
,

n = 1, . . . ,N .

In case, parameters of the Markov chain (i.e., P) and of
the channel (i.e., �) are known, conditional probabilities
P
[
Xn = x |YN = yN

]
can be found using the backward-

forward algorithm. Namely, one has

P
[
Xn = x |YN = yN

] = αn(x)βn(x)∑
x̃∈A αn(x̃)βn(x̃)

(4.1)

where
αn(x) = P

[
Yn
1 = yn1,Xn = x

]
,

βn(x) = P
[
YN
n+1 = yNn+1|Xn = x

]

Q

(
y0|y−1−m, yn1

)
=

Z−m,n
(
y−1−m, y0, yn1

)

Z−m,n
(
y−1−m, y0, yn1

)
+ Z−m,n

(
y−1−m, ȳ0, yn1

)

=
cosh

(
Ky0 + A

(
w(−m)

−1

)
+ A

(
w(n)
1

))

cosh
(
Ky0 + A

(
w(−m)

−1

)
+ A

(
w(n)
1

))
+ cosh

(
−Ky0 + A

(
w(−m)

−1

)
+ A

(
w(n)
1

))
.
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are the so-called forward and backward variables, satisfy-
ing simple recurrence relations:

αn+1(x) =
∑
x̃∈A

αn(x̃) Px̃,x �x,yn+1 , n = 1, . . . ,N − 1,

with α1(x) = P(X1 = x)�x,y1 ,

βn(x) =
∑
x̃∈A

βn+1(x̃) Px,x̃ �x̃,yn+1 , n = 1, . . . ,N − 1,

with βN (x) = 1.

The key observation of [16] is that the probability distri-
bution P

[
Xn = · |YN = yN

]
, viewed as a column vector,

can be expressed in terms of two-sided conditional proba-
bilitiesQ

[
Yn = · |YN\n = yN\n], withN \n = {1, . . . ,N}\

{n}, as follows

P
[
Xn = · |YN = yN

]

= πyn � �−1
Q
[
Yn = · |YN\n = yN\n]

〈πyn � �−1Q
[
Yn = · |YN\n = yN\n] , 1〉 ,

(4.2)

where � is the emission matrix, and π−1,π1 are the
columns of �:

� =
[
1 − ε ε

ε 1 − ε
,
]

π−1 =
[
1 − ε

ε
,
]

π1 =
[

ε

1 − ε
,
]

�−1 = 1
1 − 2ε

[
1 − ε −ε

−ε 1 − ε
,
]

and � is componentwise product of vectors of equal
lengths,

u � v = (u1 · v1, . . . ,ud · vd).

Expression (4.2) opens a possibility of constructing
denoisers when parameters of the underlying Markov
chains are unknown; we continue to assume that the

channel remains known. Indeed, two-sided conditional
probabilities Q

[
Yn = · |YN\n = yN\n] could be estimated

from the data. The Discrete Universal Denoiser algorithm
(DUDE) [16] estimates conditional probabilities

Q

(
Yn = c |Yn−1

n−kN = a−1
−kN ,Y

n+kN
n+1 = bkN1

)

=
m
(
a−1

−kN , c, b
kN
1

)
∑

c̄ m
(
a−1

−kN , c, b
kN
1

) (4.3)

where m
(
a−1

−kN , c, b
kN
1

)
is the number of occurrences of

the word a−1
−kN cb

kN
1 in the observed sequence yN =

(y1, . . . , yN ); the length of right and left contexts is set to
kN = c logN , c > 0.
The DUDE has shown excellent performance in a num-

ber of test cases. In particular, in case of the binary
memoryless channel and the symmetric Markov chain,
considered in this paper, performance in comparable to
the one of the backward-forward algorithm (4.1), which
requires full knowledge of the source distribution, while
DUDE is completely oblivious in that respect. In our opin-
ion, the excellent performance of DUDE in this case is
partially due to the fact that Q is a Gibbs measure, admit-
ting smooth two-sided conditional probabilities, which
are well approximated by (4.3) and thus can be esti-
mated from the data. It will be interesting to evaluate
performance in cases when the output measure is not
Gibbs.
Invention of DUDE sparked a great interest in two-

sided approaches to information-theoretic problems. It
turns out that despite the fact the efficient algorithms
for estimation of one-sided models exist, the analogous
two-sided problem is substantially more difficult. As alter-
natives to (4.3), other methods to estimate two-sided con-
ditional probabilities have been suggested , e.g., [6, 11, 17].
For example, Yu and Verdú [17] proposed a Backward-
Forward Product (BFP) model:

Q̃(y0|y<0, y>0) ∝ Q̃(y0|y<0)Q̃(y0|y>0),

and the one-sided conditional probabilities Q̃(y0|y<0),
Q̃(y0|y>0) can be estimated using standard one-sided
algorithms. Note, that in our model,

Q̃ (y0|y<0) Q̃ (y0|y>0)

Q̃(y0|y<0)Q̃(y0|y>0) + Q̃(ȳ0|y<0)Q̃(ȳ0|y>0)

= cosh(Ky0 + A(w−1)) cosh(Ky0 + A(w1))

cosh(Ky0 + A(w−1)) cosh(Ky0 + A(w1)) + cosh(−Ky0 + A(w−1)) cosh(−Ky0 + A(w1))
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in general does not coincide with

cosh
(
Ky0 + A(w−1) + A(w1)

)
cosh

(
Ky0 + A(w−1) + A(w1)

) + cosh
(−Ky0 + A(w−1) + A(w1)

)
= Q(y0|y<0, y>0).

Nevertheless, the BFP model seems to perform
extremely well [17].
Among other alternatives, let us mention the possibil-

ity to extend standard one-sided algorithms to produce
algorithms for estimating two-sided conditional probabil-
ities from data. This approach is investigated in a joint
work with S. Berghout, where the denoising performance
of the resulting Gibbsian models is evaluated. Gibbsian
algorithm performs better than DUDE: bit error rates are
given in the table below for noise level ε = 0.2 and various
values of p (smaller rates are better).

p Gibbs DUDE
0.05 5.30 % 5.58 %
0.10 9.91 % 10.48 %
0.15 13.20 % 13.77 %
0.20 18.34 % 18.77 %

One could also try to estimate the Gibbsian potential
directly, e.g., using the estimation procedure proposed
in [5]. This method showed promising performance in
experiments on language classification and authorship
attribution. In conclusion, let us also mention that the
direct two-sided Gibbs modeling of stochastic processes
opens possibilities for applying semi-parametric statistical
procedures, as opposed to the universal (parameter free)
approach of DUDE.
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