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Cylindrical electromagnetic waves with
radiation and absorption of energy

Hyoung-In Lee1,3* and Jinsik Mok2
Abstract

Cylindrical electromagnetic waves have been examined mostly with a radiation condition applied at the radial far
field. In modern optical technology, there are however growing number of applications where both radiation and
absorption of energy should be taken into account. In order to illustrate the ramifications of such energy balance,
we take plasmonic waves propagating around a metallic nanowire as an example. Hence, we provide both key
mathematical formulas and corresponding numerical results for the collective electronic motions in resonance with
electromagnetic waves. Firstly, we show theoretically why a net Poynting energy flow is directed inward to the
cylindrical axis. Secondly, we invoke a Cauchy-Schwarz inequality for complex variables in deriving an upper bound
on the specific transverse light spin along the axial direction. Thirdly, we could identify both first- and second-order
polarizations. Overall, loss-induced and gain-compensated characteristics are illustrated for a dissipative system. In
addition, the stability of neutral states are examined by relaxing the angular periodicity.
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1. Introduction
Cylindrical electromagnetic waves around a cylindrical
obstacle have been investigated for a long time [15]. For
instance, optical fibers and nano-scale probes rely on
wave propagations along the cylindrical axis [8, 9, 18].
Even when waves are allowed to propagate only on a
plane including the cross-sectional plane of a wire, there
are numerous technological applications.
For instance, consider whispering-gallery modes

(WGMs) involving cylindrical waves. WGMs are
employed not only for chemical and biological sensors
[8, 13, 41], but also for quantum information processing
[34]. Field focusing via WGMs is essential in realizing
photon manipulations [28]. Numerous examples are also
found in manipulating nano-objects immersed in elec-
tromagnetic fields [8, 25]. In microfluidics, rotational
waves are utilized for determining fluid viscosity as well
[36]. As regards applications to electronics industry,
integrated photonic circuits are under a hot pursuit as a
candidate replacing conventional integrated electronic
* Correspondence: hileesam@naver.com
1Research Institute of Mathematics, Seoul National University, Gwanak-gu,
Seoul 08826, South Korea
3Computational Sciences, Korea Institute for Advanced Study,
Dongdaemun-gu, Seoul 02455, South Korea
Full list of author information is available at the end of the article

© 2016 Lee and MoK. Open Access This article
International License (http://creativecommons.o
reproduction in any medium, provided you giv
the Creative Commons license, and indicate if
circuits for reasons of low energy consumption [10].
Our recent work on graphene-coated nanowires offers
additional application areas [17].
Most of these applications have been successfully ana-

lyzed as regards the energy transfer from the cylindrical
objects into the surrounding environments via the
century-old radiation condition [33, 41]. In addition to
the mathematical aspects of the radiation condition, a
variety of application areas are mentioned in [16, 33]
such as radars and wireless communications.
According to this radiation condition, only outgoing

waves are allowed from a body immersed in a free space
in the context of exterior boundary value problems [33],
thereby ensuring the well-posedness of mathematical
problems [11]. This radiation condition has been built
even into modern commercial numerical codes for
solving Maxwell’s equations [10, 16].
In fluid dynamics, it is true in the absence of energy

sources in the far field of the exterior region [23]. How-
ever, in modern optical applications, there are a few
exceptions, where incoming energy from afar should
be taken into consideration. As an example, optical
trapping of ions rely on energy supply from outside
through laser illumination [27]. As another example,
optical gain media for metamaterials act as energy
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sources, thus compensating energy dissipation by metallic
constituents [3, 10, 39].
Figure 1(a) shows a cross-section of a cylindrical nano-

wire along with the cylindrical coordinates (r, θ, z) and
Cartesian coordinates (x, y, z). The wire radius is fixed to
be R. We emphasize that only planar waves propagating
on a plane including the cross-sectional plane of a nano-
wire are under current investigation. In other words,
there are no wave propagations along the axial z-direction.
Hence, we are dealing with two-dimensional wave
problems, where all the field variables depend only on
(r, θ) or (x, y) [4, 11, 16, 33]. Our wave configuration
is thus suitable for realizing topological photonics [32], if
some material asymmetries are additionally provided.
In comparison, Fig. 1(b) shows a pair of two-

dimensional structures, which require however three-
dimensional descriptions. This configuration is hence
not under direct consideration in this study. Notice
in Fig. 1(a) that the metal part is convex toward the
surrounding medium [4]. This radiative attenuation of
waves is quite natural with such configurations. The
opposite case of concave metal parts is discussed in
[4], where local energy absorption takes place more
easily.
Classical electromagnetic waves are governed by

Maxwell’s equations. They are linear partial differential
equations (PDEs) for both electric and magnetic field
variables in the absence of explicit current sources [15].
Suppose that all the field variables are assumed to follow
the common phase factor exp(imθ) [41]. Here, m is
the angular mode index, which is integer if angular
periodicity prevails, i.e., m ∈ ℤ. The PDEs are then
separable into ordinary differential equations (ODEs)
thanks to m [40].
Fig. 1 a Schematics of primary concern to this study for a transverse
magnetic (TM) wave along with both coordinates and non-zero field
variables [8, 11]. b Three-dimensional waves around a two-dimensional
disk or a ring not under current investigation [10]. c A generic curved
or bent interface between metal and vacuum. Indicated are typical
convex and concave portions towards the vacuum [4]
Consider furthermore a two-wave-interaction function
GD

m;A uð Þ for a real parameter u > 0.

GD
m;A uð Þ≡ 1−Að ÞH 1ð Þ

m uð Þ þ 1þ Að ÞH 2ð Þ
m uð Þ: ð1:1Þ

Here, H 1ð Þ
m uð Þ and H 2ð Þ

m uð Þ are Hankel functions of first

and second kinds. Therefore, H 1ð Þ
m uð Þ and H 2ð Þ

m uð Þ imply
waves respectively outgoing and incoming in the radial
direction [2, 11, 33].
In addition, A is the asymmetry parameter with

A≡Ar + iAi so that A ∈ ℂ and Ar, Ai ∈ ℝ. When A ≠ 0,
A denote the deviation from a perfect balance be-
tween outgoing and incoming waves [31]. Notice that
the ideal situation with the combined conditions u ∈ℝ for
loss-free metals and A = 0 implies standing waves since
H 1ð Þ

m uð Þ þH 2ð Þ
m uð Þ ¼ 2Jm uð Þ in this case [31, 33].

As an exterior boundary condition, the wave portion
represented by H 2ð Þ

m uð Þ in Eq. (1.1) accounts for energy
sources, without directly incorporating any source terms
in the governing PDEs. Assuming the exterior outside
the cylinder to be energy-conserving, non-zero values of
A correspond to the interior inside the cylinder being
energy-dissipating. Figure 1(a) indicates that the interior
is filled with metals. Therefore, the collective electronic
motions in metals are in resonance with electromagnetic
waves [10, 28], which are called plasmonic waves [29].
Through this example of plasmonic waves, we are here

to explain several consequences resulting from the en-
ergy balance between the radiating outgoing waves and
the absorptive incoming waves. By way of both mathem-
atical analysis and numerical computations, we will find
neutral states by such balanced energy exchanges. In
addition, we will show how delicately those neutral
states are established [4, 14, 26].
Furthermore, we will present several characteristics of

cylindrical electromagnetic plasmonic waves. Firstly,
Poynting energy flows will be analyzed and key analytic
formulas will be derived [4]. Besides, associated implica-
tions to scattering will be discussed [9, 16, 28, 37, 41].
Secondly, we will show the existence of transverse

light spins even in the absence of axial waves [6, 7].
The light spin receives an increasing attention these
days because of both direct and inverse Faraday ef-
fects [17, 30, 32]. However, the intensive discussions
on light spins provided in [7] center around rectilin-
ear waves. In contrast, we are dealing here with light
spins for cylindrical waves. In these respects, several
interesting findings of this study are based on the fol-
lowing Cauchy-Schwarz inequality for Er, Eθ ∈ ℂ.

Im E�
r Eθ

� �
≤ Erj j Eθj j: ð1:2Þ

Here, (Er, Eθ) indicate the two cross-sectional compo-
nents of electric field. Via this inequality, a specific spin
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defined as the reduced light spin per energy density
turns out to be bounded in its magnitude. This specific
spin is similar to the conventional degree of electric-field
polarization, but they are not equal [24, 38]. Besides, the
discontinuity of specific spin across the cylindrical inter-
face is thus illustrated. Along with optical chirality [35],
light spin characterizes asymmetric structural properties
of molecules or small particles on which light is
illuminated.
Thirdly, the phase singularity found at the cylindrical

axis is related to optical vortices [5]. The electric-field
polarization will be discussed from a viewpoint of light
spin and the two-dimensionality of electromagnetic
waves [1, 31, 40]. Several analogies are made to fluid
dynamics concerning singularity and vortices as needs
arise [19].
This study complements our previous published

works, since several key mathematical proofs are
made here for the mostly numerical results presented
by our earlier publications on electromagnetic waves
in general [20] and cylindrical waves in particular
[21, 22]. We remark once more that all of our previ-
ous works have accounted only for radiating waves
but not the absorbing waves. In terms of the types of
PDEs, the metallic loss leads to hybrid nature of
hyperbolic and parabolic PDEs [11, 20, 40, 41] which
render highly non-trivial all the involved numerical
computations.

2. Problem formulation
Consider Maxwell’s equations in the absence of electric
charges and for nonmagnetic media [4, 15].

Coulomb : ∇⋅ Ɛ
→¼ 0

∇� H
→¼ ε~ε0

∂ Ɛ
→

∂t

Faraday : ∇� Ɛ
→ þ~μ0

∂ H
→

∂t
¼ 0

Gauss : ∇⋅ H
→¼ 0

:

8>>>>>>><
>>>>>>>:

ð2:1Þ

Both electric field vector Ɛ
→

and magnetic field vector

H
→

are real. The properties of vacuum are the electric
permittivity ~ε0 > 0 and magnetic permeability ~μ0 > 0 .
An electromagnetic medium is characterized by its rela-
tive permittivity ε with ε ∈ℂ. For instance, ε = 1 for
vacuum. For metals in a cylindrical nanowire, the inter-
action between electrons in metals and electromagnetic
waves is incorporated into ε(ω) as a function of fre-
quency ω according to linear response theory [15]. We
assume ω > 0 throughout this study.
If all the field variables are assumed to follow the com-

bined phase factor exp(imθ–iωt), the normalized electric

Ampère :
field vector E
→

and magnetic field vector H
→

are defined as
follows [7].

Ɛ
→
≡

1ffiffiffiffiffi
~ε0

p Re E
→

exp imθ−iωtð Þ
h i

H
→

≡
1ffiffiffiffiffi
~μ0

p Re H
→

exp imθ−iωtð Þ
h i :

8>><
>>:

ð2:2Þ

In terms of E
→

and H
→
, the Ampère law and Faraday’s

law in Eq. (2.1) now read ∇� H
→¼ −ik0ε E

→
and ∇�

E
→¼ −ik0ε H

→
, respectively. Here, the vacuum wave num-

ber k0 is defined by k0≡ω/c0, where c0 is the light speed
in vacuum defined by c0≡1=

ffiffiffiffiffiffiffiffiffi
~ε0~μ0

p
.

The upper left portion of Fig. 1(a) shows a
transverse-magnetic (TM) wave with its non-zero field
components (Er, Eθ,Hz) [10]. The interior in the range
0 ≤ r < R refers to the metallic nanowire. In compari-
son, the exterior in the range R < r refers to the sur-
rounding dielectric, which is taken to be vacuum in
this study. Hence, the cylindrical metal-dielectric (M-D)
interface is located at r = R. Whenever necessary, replace-
ments should be made such that Hz→HM;D

z and ε→ εD,M
respectively for the interior and exterior. In this notation,
εD = 1.
As a data, the light wavelength is fixed at λ = 600 nm

with λ≡2πc0/ω, while the nanowire radius is taken to be
R = 600 nm on the nanometer scales. In addition, m/R is
called the surface wave number [4]. The relative dielec-
tric constant εM(ω) of metal is εM = –8.93 + 0.979i as
read from [12] for gold at λ = 600 nm, thus lying in the
range of visible light. Notice that Im(εM) = 0.979 stands
for metallic loss, which leads to the dissipative attenu-
ation of plasmonic waves [4].
Maxwell’s equations give rise to the following two aux-

iliary relations [4].

Er ¼ −
m
εk0r

Hz; Eθ ¼ −i
1
k0ε

dHz

dr
: ð2:3Þ

When Eq. (2.3) is plugged into Eq. (2.1), Hz is
found to be governed by the following Helmholtz
equation [11, 28, 33, 36].

1
r
d
dr

r
dHz

dr

� �
þ εk20−

m2

r2

� �
Hz ¼ 0: ð2:4Þ

The reduced radial coordinate ρ≡r/R is defined so that
0 ≤ ρ ≤ 1 in the interior and 1 ≤ ρ <∞ in the exterior.
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Hence, ρ = 1 refers to the cylindrical M-D interface. In
addition, the size parameter q is defined below.

q≡
2πR
λ

≡
ωR
c0

≡k0R > 0: ð2:5Þ

From our data of R = 600 nm and λ = 600 nm, q = 2π.
Let us summarize our data for future reference [4, 10,
12, 16, 28].

R ¼ 600nm
λ ¼ 600nm g⇒ q ¼ 2π

εM ¼ −8:93þ 0:979i
εD ¼ 1

:�

ð2:6Þ
Since Maxwell’s equations are linear, the magnetic field

can assume the following normalized forms respectively
in the interior and exterior [17, 18, 36].

HM
z ρð Þ ¼ Im

ffiffiffiffiffiffiffiffiffi
−εM

p
qρ

� �
Im

ffiffiffiffiffiffiffiffiffi
−εM

p
q

� � ¼ Jm
ffiffiffiffiffiffi
εM

p
qρ

� �
Jm

ffiffiffiffiffiffi
εM

p
q

� � ; ρ < 1

HD
z ρð Þ ¼ GD

m;A qρð Þ
GD

m;A qð Þ ; ρ > 1
:

8>>><
>>>:

ð2:7Þ
Here, GD

m;A uð Þ is as defined in Eq. (1.1). Besides,
Im(β) = i−mJm(iβ) for complex β renders identical the
two expressions for HM

z ρð Þ in Eq. (2.7). Hence, Eq. (2.7)
represents spatially inhomogeneous fields necessary to de-
tect asymmetric optical properties of matters immersed in
our light fields [35].
A subtle requirement −π < arg βð Þ≤1

2π is satisfied by
ensuring

ffiffiffiffiffiffi
εM

p ¼ 0:163þ 2:99i , but not
ffiffiffiffiffiffi
εM

p ¼ 0:163−
2:99i [2]. This fact is in conformity to the causality
condition accompanied by the phase factor exp(–iωt)
with ω, t ≥ 0. It is numerically confirmed for iβ∝

ffiffiffiffiffiffi
εM

p
that arg(β) = arg(2.99 − i0.163) = − 0.0546. By the way,
the choice Im(εM) > 0 is in line with the selection of
the outgoing waves in the absence of energy sources
[4, 16, 23, 33].
Let us define the logarithmic derivative ∂log[F(β)] [4, 5].

∂log F βð Þ½ �≡ d
dα

ln F αð Þ½ �
� �			

α¼β

¼ 1
F αð Þ

dF αð Þ
dα

� �			
α¼β

: ð2:8Þ

Notice that this kind of logarithmic derivative is
characteristic of Green functions encountered when
dealing with Laplace operator in two-dimensional pla-
nar geometry [11, 16, 40].
As one of interface conditions across ρ = 1, the first con-

tinuity in Hz leads to HM
z 1ð Þ ¼ HD

z 1ð Þ , which has already
been incorporated into Eq. (2.7). The other continuity in
εEr becomes εMEM
r 1ð Þ ¼ εDED

r 1ð Þ , which is identical to
HM

z 1ð Þ ¼ HD
z 1ð Þ because of Eq. (2.3). The third continuity

in Eθ is enforced such that EM
θ 1ð Þ ¼ ED

θ 1ð Þ, which is trans-
lated via Eq. (2.3) into the following [4].

1
εM

dHM
z ρð Þ
dρ

					
ρ¼1

¼ 1
εD

dHD
z ρð Þ
dρ

					
ρ¼1

: ð2:9Þ

Consequently, the well-known dispersion relation
RM ¼ RD on resonance [4, 8–10] can be written as
follows.

RM ¼ RD: ð2:10Þ
Here, the residual function RM for the interior defined

as follows [4].

RM≡−
∂log Im

ffiffiffiffiffiffiffiffiffi
−εM

p
q

� �
 �
ffiffiffiffiffiffiffiffiffi
−εM

p ¼ ∂log Jm
ffiffiffiffiffiffi
εM

p
q

� �
 �
ffiffiffiffiffiffi
εM

p : ð2:11Þ

On the other hand, the residual function RD for the
exterior is defined as follows with the help of GD

m;A qð Þ
defined previously in Eq. (1.1).

RD≡∂log GD
m;A qð Þ

h i

≡
1−Að Þ∂qH 1ð Þ

m qð Þ þ 1þ Að Þ∂qH 2ð Þ
m qð Þ

1−Að ÞH 1ð Þ
m qð Þ þ 1þ Að ÞH 2ð Þ

m qð Þ
: ð2:12Þ

∂qH 1;2ð Þ
m qð Þ≡ dH 1;2ð Þ

m qð Þ
dq

: ð2:13Þ

Notice that both RM and RD arise essentially from the
respective field profiles given in Eq. (2.7).
From the linearity of GD

m;A uð Þ in Eq. (1.1) with respect
to A, the dispersion relation RM ¼ RD in Eq. (2.10)

along with RM ¼ ∂log GD
m;A qð Þ

h i
in Eq. (2.12) takes the

following bilinear form

RM ¼ γ1 þ γ2A
γ3 þ γ4A

: ð2:14Þ

Here, (γ1, γ2, γ3, γ4) are appropriately specified as
follows.

γ1≡∂qH
2ð Þ
m qð Þ þ ∂qH 1ð Þ

m qð Þ
γ2≡∂qH

2ð Þ
m qð Þ−∂qH 1ð Þ

m qð Þ
γ3≡H

2ð Þ
m qð Þ þ H 1ð Þ

m qð Þ
γ4≡H

2ð Þ
m qð Þ−H 1ð Þ

m qð Þ
: ð2:15Þ

Therefore, A(m) can be readily evaluated for a pair of
the already prescribed data in Eq. (2.6). We call a state
with such a computed A the “neutral” state.
To the best of the author’s knowledge, the particular

dispersion relation RM ¼ RD in Eq. (2.10) is derived
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here for the first time in the presence of both energy ra-
diation and absorption.

3. Limit cases
The relations presented so far admit several limit
forms useful to better grasping the dynamics under
investigation. In the context of gently bent interfaces
as depicted in Fig. 1(c), several relevant limit forms
are discussed in details in [4]. His treatment based on
local curvatures along the interfaces pointed out that
the convexity or concavity toward the vacuum play a
crucial role in determining whether energy radiation
or absorption is more dominant. In addition, we can
figure out that his deduction of slowly varying or
adiabatic changes in field variables had ultimately led
to the notion of Berry curvature and connection,
which is related to Chern-Simons theory of topo-
logical physics [32].
Firstly, in a static limit as ω→ 0, Helmholtz equa-

tion is Eq. (2.4) is reduced to the following Laplace
equation.

1
r
d
dr

r
dHz

dr

� �
−
m2

r2
Hz ¼ 0: ð3:1Þ

Notice that this equation is of homogeneous order
with respect to the r-coordinate, thus admitting the
general solution Hz(ρ) = C+ρ

m + C−ρ
−m for m > 0. Here,

C± are constants with C± ∈ ℂ. For the sake of simpli-
city, consider only the case HM

z ρð Þ→0 as ρ→ 0 but
HD

z ρð Þ→0 as ρ→∞. Since only a single additional
interface condition is applicable, we can choose it to
be HM

z 1ð Þ ¼ HD
z 1ð Þ instead of EM

θ 1ð Þ ¼ ED
θ 1ð Þ . Instead

of Eq. (2.7), we hence obtain the solution to Eq. (3.1)
as follows.

HM
z ρð Þ ¼ ρm; ρ < 1

HD
z ρð Þ ¼ ρ−m; ρ > 1

:

�
ð3:2Þ

For the particular value of m = 0, Eq. (3.1) admits
Hz(ρ) =C+ +C− ln(ρ) [40].
Secondly, in the high-frequency limit as ω→∞ [16],

Eq. (2.4) leads to εk20
		 		∝ m2=r2j j , thus requiring propor-

tionately highly rotational speeds as well. This limit has
been thoroughly analyzed in [4] under the subject of
“argument < < order, order large” [2].
Thirdly, the azimuthally independent waves with m = 0

are of utmost interests to engineering applications for
waveguides [9, 11]. But, let us mention only that the
transverse-magnetic (TM) wave in this case comes with
its non-zero field components (Er, Hθ, Ez) instead of
(Er, Eθ, Hz) under current investigation.
Fourthly, for A = –1 and εM = 1, RM ¼ RD in Eq. (2.10)

is reduced to the following much-studied dispersion
relation [4, 9, 14, 28] in the presence solely of energy
radiation.

RM≡
∂log Jm

ffiffiffiffiffiffi
εM

p
q

� �
 �
ffiffiffiffiffiffi
εM

p ¼ 1

H 1ð Þ
m qð Þ

dH 1ð Þ
m qð Þ
dq

≡RD:

ð3:3Þ
Note that Eq. (3.3) is highly nonlinear in the usual

eigenvalue q defined in Eq. (2.5), instead of being able to
be specified as in Eq. (2.6). In this case, energy radiation
is represented by H 1ð Þ

m qð Þ in the absence of energy
absorption. In the presence of metallic loss as given by
the dielectric constant εM = –8.93 + 0.979i as provided in
Eq. (2.6), Eq. (3.3) should lead to q being complex. In
turn, such a complex q means a complex ω according to
q≡ωR/c0 in Eq. (2.5).
Notice furthermore that εM = –8.93 + 0.979i has been

selected from the experimentally measured data such as
from [12]. Of course, the frequency-dependent data
εM(ω) or εM(λ) is provided in [12, 32, 41] as well. How-
ever, the data εM(ω) has been obtained only for real ω,
i.e., under steady states. Normally, the data εM(ω) with
complex ω is not available. Even the phenomenological
Drude formula is εM ωð Þ ¼ 1−ω2

p= ω2 þ iω=τð Þ with both

ωp and τ specified so that it is supposed to be valid only
for real ω [4].
In a short summary, Eq. (3.3) poses no computational

difficulty in finding qr + iqi [4], once εM(ω) is available.
Unfortunately, such data εM(ω) for complex ωr + iωi is
currently unavailable. This is why traditional solutions
to Eq. (3.3) have been made mostly with loss-free
metal with Im(εM) = 0 as in [4]. In this case, Im

ffiffiffiffiffiffiffiffiffi
−εM

p
q

� �
in Eq. (2.11) can be conveniently rewritten to be Imffiffiffiffiffiffiffiffi

εMj jp
q

� �
[4]. Moreover, for the generic curved interface

such as displayed in Fig. 1(c), the convex and concave por-
tions are associated more likely with H 1ð Þ

m qð Þ and H 2ð Þ
m qð Þ,

respectively, whereby m for exp(imθ) is then relaxed to be
complex, viz., m ∈ℂ.
Under the assumption of Im(εM) = 0, we have employed

εM = –8.93 for loss-free metals in solving Eq. (3.3). There
is now only a radiative attenuation of rotational waves but
with neither dissipative attenuation nor energy absorption
from the radial far field. Meanwhile, it is necessary
that qi < 0 or ωi < 0 because of q≡ωR/c0 for waves to
be attenuated as time goes on as seen from the phase
factor exp(−iωt) = exp(−iωrt + iωit).
For the specified angular mode index m = 1, we found

q = 0.5694–i0.5314 by numerical computations. This
eigenvalue is computed within the computational error
RM−RDj j < 10−4 for the residual in Eq. (3.3). In
addition, there are infinitely many eigenvalues of q with
|qi| > 0.5314 so that they are more attenuating. With
varying m, we performed more computations.



Fig. 3 The asymmetry parameter A with varying 0≤m ∈ ℤ. Note
the scale change Ār≡ sgn(Ar)|Ar|

0.25 and similarly for Āi. The arrows
indicate the direction of increasing m
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Figure 2 shows a series of thus-found complex size
parameter q≡qr + iqi with varying m. The horizontal axis
is the temporal frequency qr, whereas the vertical axis is
the attenuation rate –qi. The most notable is the fact
that the minimum in –qi is achieved with m = 1. In com-
parison, the non-rotational wave with m = 0 is more ra-
diative than any other rotational waves with m > 1 [32].
Physically speaking, a minimally rotational wave under-
goes the least attenuation, thus corroborating in part the
importance of light spins. Since the curve over the range
m ≥ 1 is less steep than the linear one in Fig. 2(a), the ef-
fectiveness of rotational waves, namely, qr/m increases
with m. Furthermore, it is supposed from Fig. 2(b) that
|qr/m| < 1 even as m→∞ [4].

4. Dispersion relation and its solutions
Our numerical results are obtained as follows. Firstly,
the input data of q = 2π and (εM = − 8.93 + 0.979i, εD = 1)
are assigned as in (2.6). Secondly, RM is evaluated from
(2.11) with a specified value of m. Thirdly, the four pa-
rameters (γ1, γ2, γ3, γ4) are computed from (2.15).
Fourthly, A is finally computed as follows by inverting
Eq. (2.14).

A ¼ γ3RM−γ1
γ2−γ4RM

: ð4:1Þ

Figure 3 plots the asymmetry parameter A on the
complex (Ar, Ai)-plane with varying m as indicated by
several integers with 0 ≤m ∈ ℤ [36]. It turns numerically
out that Ar > 0 for all values of m, thus meaning a
Fig. 2 a The temporal frequency qr and the attenuation rate –qi
of the complex size parameter q≡qr + iqi. b The effectiveness of
rotational waves qr/m increases with m
balance falling a little in favor of energy absorption. It is
because some portion of incoming energy is eventually
dissipated in metal, whereas the remaining portion is
reflected as radiating energy. Figure 3 contains add-
itional straight lines that connect two values of A be-
tween two adjoining neutral states with m and m + 1.
Notice that these connecting lines do not result from

computations. However, dynamics along these lines can
be conjectured to be associated with non-integer values
of m arising from generic convex and/or concave inter-
faces as depicted in Fig. 1(c) [4].
Furthermore, Fig. 3 shows that the several leading

neutral states over 1 ≤m ≤ 7 undergo rather erratic loca-
tion changes on the complex Ā -plane for relatively
small values of m. Note the scale change Ār≡
sgn(Ar)|Ar|

0.25 and similarly for Āi. In other words, A
moves across the real line of Ai = 0 with varying m.
However, from m = 7 onward to m = 20, they follow an
almost straight trajectory. Already at m = 20, its neutral
state nearly reached its limit location at A = 0, viz., a per-
fect balance between energy radiation and absorption.
Let us review the meaning of the dispersion relation

presented in Eq. (2.10), which can be understood as a
complex equation RM

ffiffiffiffiffiffi
εM

p
q;A

� � ¼ RD q;Að Þ . As a re-
sult, Eq. (2.10) requires the simultaneous satisfaction of
the following two real relations.

Re RM
ffiffiffiffiffiffi
εM

p
q;A

� �
 � ¼ Re RD q;Að Þ½ �
Im RM

ffiffiffiffiffiffi
εM

p
q;A

� �
 � ¼ Im RD q;Að Þ½ � :
�

ð4:2Þ

This pair of equations are numerically solved for A as
an eigenvalue to the operators consisting of the domain
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operator in Eq. (2.4) and the pair of boundary operators
in Eq. (2.9) of Neumann type and HM

z 1ð Þ ¼ HD
z 1ð Þ of

Dirichlet type [4, 17, 32]. Therefore, our problem can be
formulated only in terms of the magnetic field HM;D

z

along the cylindrical axis [11]. Once A is found, we
can view both RM

ffiffiffiffiffiffi
εM

p
q

� �
and RD qð Þ as depending

only on q. We then make variation in q, which can
be alternatively achieved by introducing the aforemen-
tioned ρ≡r/R.
Recall first of all that εD = 1 along with other fixed

data in Eq. (2.6). Figure 4 displays four curves: Re

RM
ffiffiffiffiffiffi
εM

p
ρq

� �
 �
in red color, Re RD ρqð Þ½ � in blue, Im

RM
ffiffiffiffiffiffi
εM

p
ρq

� �
 �
in magenta, and Im RD ρqð Þ½ � in green.

As expected from the solution to the dispersion rela-
tion RM

ffiffiffiffiffiffi
εM

p
q

� � ¼ RD qð Þ , the pair of broken curves

for Re RM
ffiffiffiffiffiffi
εM

p
ρq

� �
 �
and Re RD ρqð Þ½ � intersect at ρ = 1.

Likewise, the other pair of solid curves for Im

RM
ffiffiffiffiffiffi
εM

p
ρq

� �
 �
and Im RD ρqð Þ½ � intersect at ρ = 1 (they

do although the crossing is hardly discernible with
bare eyes).
What is more important is the potential-function

nature of the modified logarithmic derivatives RMffiffiffiffiffiffi
εM

p
ρq

� �
and RD ρqð Þ, as explained for Eq. (2.10). Al-

though RM
ffiffiffiffiffiffi
εM

p
ρq

� �
and RD ρqð Þ are originally de-

fined respectively in the interior and in the exterior,
both are extended in Fig. 4 respectively into the ex-
terior and into the interior. It is thus found from
Fig. 4 that both Re RM

ffiffiffiffiffiffi
εM

p
ρq

� �
 �
and Im RM

ffiffiffiffiffiffi
εM

p
ρq

� �
 �
exhibit the characteristics of infinitely attracting po-
tential functions, thereby characterizing metals. In
comparison, Re RD ρqð Þ½ � looks like an infinitely repel-
ling potential function. It is unique that Im RD ρqð Þ½ �
displays its minimum at a certain value of ρ in the
vicinity of the origin at ρ = 0.
Fig. 4 The real and imaginary parts of the modified logarithmic
potentials for m = 1. The corresponding asymmetry parameter
is A = 0.02426 + i0.6887
As a precaution in the following developments, we no-
tice the following inequality as regards Eq. (2.7).

HD
z ρq; qð Þ ¼ GD

m;A qρð Þ
GD

m;A qð Þ
dHD

z ρq; qð Þ
d qρð Þ ¼ 1

GD
m;A qð Þ

dGD
m;A qρð Þ
d qρð Þ

≠
1

GD
m;A qρð Þ

dGD
m;A qρð Þ
d qρð Þ ≡∂log GD

m;A qρð Þ
h i

:

ð4:3Þ

Here, HD
z ρð Þ is rewritten to be HD

z ρq; qð Þ, where ρq is
a variable depending on the radial coordinate, but q is a
specified parameter. A similar inequality holds true to
HM

z ρð Þ as well.

5. Poynting energy flows
The energy flow of electromagnetic waves is described

by Poynting vector P
→
≡ Pr;Pθ; Pzð Þ with P

→
≡

ffiffiffiffiffi
εj jp
Re

E
→ �H

→ �
� 


[4, 15]. This formula is valid in a time-

averaged sense for ω > 0. Notice that q≡k0R from Eq. (2.5),
and it is specified as in Eq. (2.6). Let us evaluate each com-

ponent of P
→
. Firstly, it is trivially found that PM;D

z ¼ 0. Sec-

ondly, PD
θ ¼ −Re ED

r HD
z

� ��
 �
, which becomes via Eq. (2.3)

PD
θ ¼ m ρqð Þ−1 HD

z

		 		2 . Hence, PD
θ appears to be propor-

tional to m. Notice here that we are interested mainly in
the dielectric exterior.
Thirdly, PD

r ¼ Re ED
θ HD

z

� ��
 �
, which is evaluated for

our particular cylindrical wave in the following way.
In the dielectric exterior, Eq. (2.3) from Maxwell’s
equations are specialized to ED

r ¼ − m=k0rð ÞHD
z and

ED
θ ¼ −i k0ð Þ−1 dHD

z =dr
� �

since εD = 1. With a suitable

change in the independent variable, PD
r leads to the

following.

PD
r αð Þ ¼ Re −i

1
k0

dHD
z

dr

� �
HD

z

� ��� �

¼ HD
z αð Þ		 		2Im ∂log Hz αð Þ½ �� �

¼ HD
z

		 		2 αð ÞIm ∂log GD
m;A αð Þ

h in o:

ð5:1Þ

For simplicity, we employed a short-hand notation
α≡qρ for the arguments of the relevant functions in the
dielectric exterior. Notice that α > 0 from Eq. (2.5).
The last step in Eq. (5.1) is taken by resorting to the
HD

z -profile given in Eq. (2.7) [5, 21, 22].



Fig. 5 a The Poynting vector P
→

Rþ
D≡PDr;Rþ êr þ PDθ;Rþ êθ on the cross-

sectional plane evaluated at ρ = 1+ with increasing 0 ≤m ∈ ℤ. b An
imperfect reflection of an outgoing wave for a given incoming
wave. c The radial profile of the circumferentially integrated
ρPDr ρð Þ
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For Eq. (5.1), let us analyze GD
m;A αð Þ defined in Eq. (1.1)

by recalling [2, 33]

H 1;2ð Þ
m αð Þ ¼ Jm αð Þ � iYm αð Þ: ð5:2Þ

Hence, GD
m;A αð Þ defined in Eq. (1.1) can be recast into

GD
m;A αð Þ ¼ 2 Jm αð Þ−iAYm αð Þ½ �: ð5:3Þ

Let us further define a temporary parameter Γ(α),
which is related to the absolute value squared.

Γ αð Þ≡ Jm αð Þj j2 þ Aj j2 Ym αð Þj j2

¼ H 1;2ð Þ
m αð Þ		 		2 ¼ 1

4 G
D
m;A αð Þ

			 			2
: ð5:4Þ

We can thus proceed with ∂log GD
m;A αð Þ

h i
as follows.

Γ αð Þ∂log GD
m;A αð Þ

h i

¼ dJm αð Þ
dα

Jm αð Þ þ Aj j2 dYm αð Þ
dα

Ym αð Þ

þAi
dJm αð Þ
dα

Ym αð Þ þ dYm αð Þ
dα

Jm αð Þ
� �

þiAr
dJm αð Þ
dα

Ym αð Þ− dYm αð Þ
dα

Jm αð Þ
� �

:

ð5:5Þ

As Im ∂log GD
m;A αð Þ

h in o
is needed for Eq. (5.1), the two

leading rows in the above Eq. (5.5) do not make any
contributions. We are thus left with the last row of
Eq. (5.5).

Im ∂log GD
m;A αð Þ

h in o
=Ar

¼ dJm αð Þ
dα

Ym αð Þ− dYm αð Þ
dα

Jm αð Þ

¼ −
2
πα

:

ð5:6Þ
Here, we utilized the Wronskian formula between

Jm(α) and Ym(α) [2].
Reverting to α≡qρ, we obtain the following desired

formula for (5.1) [4].

PD
r ¼ −

2
πqρ

Ar
HD

z qρð Þ		 		2
Γ qρð Þ ∝−

Ar

qρ
: ð5:7Þ

Here, a use is made of Eq. (5.4). Now, two key facts
can be observed from Eq. (5.7). Firstly, PD

r < 0 if Ar > 0,
thereby denoting a net inward energy flow in the radial
direction. Indeed, all the numerical data presented in
Fig. 3 indicates Ar > 0. Physically speaking, a net energy
should be rushed radially inward in order to compensate
for the energy dissipation by metals in the cylindrical in-
terior. Secondly, the circumferentially integrated energy
flow ρPD

r ρqð Þ remains constant since ρPD
r ρqð Þ∝−Ar=q as

seen from Eq. (5.7) [33].
For numerical computations, the profile of HD

z given
in Eq. (2.7) is employed. For simplicity, field values at
ρ = 1+ on the dielectric side of the M-D interface are
evaluated to provide both PD

θ;Rþ and PD
r;Rþ . Therefore, the

vector P
→

Rþ
D ¼ PD

r;Rþêr þ PD
θ;Rþêθ is formed with (êr, êθ) be-

ing the unit vectors along the (r, θ) -coordinates.

Figure 5(a) plots scaled vector P
→

Rþ
D≡PD

r;Rþêr þ PD
θ;Rþêθ as

m is varied over m = 0,1,⋯,9,10. Notice for the two com-
ponents that PD

r;Rþ < 0 for all m, whereas PD
θ;Rþ > 0 .

Figure 5(b) shows a typical scattering situation, which
involves both incoming and outgoing waves represented
respectively by H 2ð Þ

m and H 1ð Þ
m [9, 37]. According to, say,

the red bar with m = 2 in Fig. 5(a) for P
→

Rþ
D, the reflec-

tion is not specular (namely, the reflection angle being
different from the incidence angle) due to metallic loss
as displayed in Fig. 5(b).
Notice that HD

z q ¼ 1ð Þ		 		 ¼ 1 by definition in Eq. (2.7).

Hence, Eq. (5.1) shows that the condition PD
r;Rþ < 0 is
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identical to PD
r;Rþ ¼ Im RDð Þ < 0 , where RD≡∂log

GD
m;A qð Þ

h i
from Eq. (2.12). As a result, Im RMð Þ < 0 in

the interior from the dispersion relation RM ¼ RD in
Eq. (2.10). Similarly, PM

r ρð Þ can be computed.
Let us rescale both PM;D

r ρð Þ such that PM;D
r ρð Þ=PM;D

r

ρ ¼ 1ð Þ→PM;D
r ρð Þ . On this new scale, PM;D

r 1ð Þ ¼ 1 .
Figure 5(c) displays the circumferentially integrated
ρPM;D

r ρð Þ, where the additional constant factor 2πk0R
is neglected. Therefore, ρPD

r ρð Þ ¼ 1 for all 1 ≤ ρ < ∞
in Fig. 5(c) [33]. The single-curve-like black-red dotted
curves result from an almost complete overlap for the five
curves drawn for m = 0,2,4,6,8. However, there do exist fi-
nite non-zero differences among the various profiles, espe-
cially on the metallic side in the vicinity of the M-D
interface as marked by a green broken circle in Fig. 5(c).
This field confinement accompanied by a penetration
feature [4, 10, 17, 28, 29] is similar to the boundary-layer
feature in fluid dynamics [19].

6. Light spins and upper bounds

Consider the light spin vector S
→¼ Sr; Sθ; Szð Þ defined as

follows [6, 7, 22, 24].

S
→
≡
g
2
Im εj jE→ �� E

→ þH
→ �� H

→� 

: ð6:1Þ

Here, g is a constant depending on the system of units.

Notice that S
→

comes in dual terms by consisting of both
electric and magnetic parts [7, 32]. In terms of light-
particle interactions [7], light spins are related to the
torque exerted on particles by light.
Because of the single non-zero magnetic field Hz,

the term Im H
→ �� H

→� 

vanishes identically. Since

non-zero electric field components (Er, Eθ) lie on the

cross-sectional plane, E
→ �� E

→� 

z
¼ E�

r Eθ−E�
θEr , whereas

Sr = Sθ = 0 identically. As a result, Im E
→ �� E

→� 

z
¼ 2Im

E�
r Eθ

� �
so that the sole non-zero spin component is

given by.

Sz≡g εj jIm E�
r Eθ

� �
: ð6:2Þ

On the other hand, the electromagnetic energy density
W is defined as follows also in dual terms [7, 15, 24].

W ¼ gω
2

εj j E
→

��� ���2 þ H
→

��� ���2
� �

: ð6:3Þ

Here, the factor |ε| in the term εj j E
→

��� ���2 accounts for

the positivity of energy [40].
As E
→

��� ���2 ¼ E
→ �⋅ E

→¼ Erj j2 þ Eθj j2 and H
→

��� ���2 ¼ Hzj j2
for our particular cylindrical wave,

W ¼ gω
2

εj j Erj j2 þ Eθj j2� �þ Hzj j2
 �
: ð6:4Þ

In the meantime, the specific transverse light spin sz
(to be henceforth shortened as “specific spin”) in the
axial z-direction is defined with respect to energy density
of electromagnetic waves [7, 24].

sz≡
ωSz
W

¼ 2 εj jIm E�
r Eθ

� �
εj j Erj j2 þ Eθj j2� �þ Hzj j2 : ð6:5Þ

We can prove that its magnitude is bounded such
that |sz| ≤ 1 without actually plugging the solutions
(Er, Eθ, Hz) related via Eq. (2.3) into Eqs. (6.2) and (6.4).
This requires only an invocation of Cauchy-Schwarz
inequality Im E�

r Eθ

� �
≤ Erj j Eθj j in Eq. (1.2) as follows.

szj j≤ 2 εj j Erj j Eθj j
εj j Erj j2 þ Eθj j2� �þ Hzj j2 : ð6:6Þ

Hence,

1− szj j≥Nspin

Dspin

Dspin≡ εj j Erj j2 þ Eθj j2� �þ Hzj j2
Nspin≡ εj j Erj j2 þ Eθj j2� �þ Hzj j2−2 εj j Erj j Eθj j

¼ εj j Erj j− Eθj jð Þ2 þ Hzj j2≥0

:

ð6:7Þ

Consequently, |sz| ≤ 1 is proved. In addition, we expect
that |sz| = 1 hardly occurs, because of the positive term
|Hz|

2 in the definition for Nspin of the above equation.
Therefore, the only chance that |sz|→ 1 is feasible oc-
curs in two cases: (1) as |Er|, |Eθ|, |Hz|→ 0, viz., or
(2) as |Er| = |Eθ| and |Hz|→ 0. Both cases can be
called an optical singularity [5]. Via the upcoming
Eqs. (6.12) and (6.13), we will find that the latter case
(2) is the correct one. This point will become clear
from the forthcoming Figs. 5 and 7 obtained through
numerical computations.
Via Maxwell’s equations, we can numerically evaluate

the specific spin sz≡ωSz/W in Eq. (6.5). To this end, both

ε and E
→

should be specialized to εM,D and E
→

M ;D

whenever need arises. By following the steps similar to
Eqs. (5.1)-(5.7), we can arrive at the analytic expression
for SM;D

z from Eqs. (2.3) and (2.7).
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SMz ¼ 2
m
εMj j

HM
z

		 		2
k0Rρ

Re
ffiffiffiffiffiffi
εM

p
∂log Jm

ffiffiffiffiffiffi
εM

p
qρð Þ½ �� �

SDz ¼ 2m
HD

z

		 		2
k0Rρ

Re ∂log GD
m;A qρð Þ

h in o :

8>>><
>>>:

ð6:8Þ

By comparing Eq. (5.1) with Eq. (2.7) to Eq. (6.8),
PD
r ; S

D
z

� �
turns out to form a complex-conjugate pair

through the common factor ∂log GD
m;A qρð Þ

h i
. However,

SDz is related to PD
θ ¼ m ρqð Þ−1 HD

z

		 		2 through m as well.

Figure 6 plots the specific spins sM;D
z in both interior

and exterior. Because the specific spin vanishes for
non-rotational waves defined with m = 0, only cases
with m = 1,2,3,⋯ are considered. For simplicity, only
four cases with m = 1,2,4,10 are presented here. Let
us present three items of findings from Fig. 6.
Firstly, we find from Fig. 6 that sM;D

z

		 		≤1 as has already

been proved in Eq. (6.7). In the exterior, sDz undergoes si-
nusoidal undulations between up-spins with sDz > 0 and
down-spins with sDz < 0 . Since εM = − 8.93 + 0.979i ∈ℂ,
the metal in the cylindrical interior is analogous to a
viscous fluid. In contrast, the surrounding dielectric
(vacuum) with εD = 1 can be thought of as an inviscid
fluid [19].
In fact, Maxwell’s equations in Eq. (2.1) possess char-

acteristics pertaining to a system of parabolic PDEs be-
cause εM ∈ℂ with Im(εM) > 0, although they are
apparently a system of hyperbolic PDEs [4, 40]. See [20]
for full discussions. From this perspective, the mono-
tonic profile in the metallic interior shown in Fig. 6 is
Fig. 6 The radial profile of the specific spin sz(ρ) over the range
0≤ ρ≤ 3. Four curves are generated for m = 1,2,4,10 in different colors
analogous to what we find with a fluid of a larger viscos-
ity. In comparison, the oscillatory feature shown in the
dielectric exterior is what we encounter with a fluid of a
smaller viscosity.
Secondly, sMz →1 as ρ→ 0 or r→ 0, regardless of m > 0.

This fact appears a bit contradictory to Eq. (6.8), which
seemingly predicts sMz ∝m . In order to resolve this
contraction, let us specialize sz≡ωSz/W in Eq. (6.5) to
sMz ≡ωSMz =WM in the metallic interior.

sMz ¼ εMj jIm EM
r

� ��
EM
θ


 �
εMj j EM

r

		 		2 þ EM
θ

		 		2� 

þ HM

z

		 		2 : ð6:9Þ

Here, we specialized both Eq. (6.2) to SMz and Eq. (6.4)
to WM. Furthermore, Eq. (2.3) is specialized to EM

r and
EM
θ , respectively.
When both EM

r and EM
θ from Eq. (2.3) are plugged into

Eq. (6.9),

sMz ¼
2Im i m

k0r
HM

z

� �� 1
k0

dHM
z

dr

h i

m
k0r

HM
z

			 			2 þ 1
k0

dHM
z

dr

			 			2
� �

þ εMj j HM
z

		 		2 : ð6:10Þ

Notice that k0r≡ρq is dimensionless from q≡k0R
and ρ≡r/R. Since both numerator and denominator
of Eq. (6.10) are homogeneous in HM

z , we can set
HM

z ¼ Jm
ffiffiffiffiffiffi
εM

p
qρ

� �
instead of the normalized HM

z ¼ Jmffiffiffiffiffiffi
εM

p
qρ

� �
=Jm

ffiffiffiffiffiffi
εM

p
q

� �
in Eq. (2.7). It is because Jmffiffiffiffiffiffi

εM
p

q
� �

is just a normalization constant in view of
varying ρ.
The desired proof that sMz →1 as ρ→ 0 can be ra-

ther easily ascertained by the asymptotic formula that
Jm(α)→ (m !)− 1(α/2)m as |α|→ 0 for α ∈ ℂ [2]. Notice
that

ffiffiffiffiffiffi
εM

p
ρq∈ℂ in the argument of Jm

ffiffiffiffiffiffi
εM

p
ρq

� �
, al-

though ρ, q ∈ ℝ. Now, Eq. (6.10) is examined as ρ→ 0
as follows.

sMz ¼
2Re m

qρ ρmð Þ� 1
q
dρm

dρ

h i

m
qρ ρ

m
			 			2 þ 1

q
dρm

dρ

			 			2
� �

þ εMj j ρmj j2
: ð6:11Þ

Here, we implemented Im(iα) = Re(α) for α ∈ ℂ in
arriving from Eq. (6.10) at Eq. (6.11).
In addition, the common factor |εM|(2

mm !)− 2q2 has
been canceled during this step. Simplifying further,

sMz ¼
2m2

q2 ρ
2m−2

m2

q2 ρ
2m−2 þ m2

q2 ρ
2m−2 þ εMj jρ2m : ð6:12Þ

The last term in the denominator is much smaller than
the two leading terms, since ρ2m < < ρ2m − 2 as ρ→ 0. In



Fig. 7 The jump in the specific spin Δsz≡sDz ρ ¼ 1þð Þ−sMz ρ ¼ 1−ð Þ
across the metal-dielectric interface as m is increased a for smaller
m’s and b for larger m’s
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other words, the axial transverse magnetic-field compo-
nent HM

z makes a negligible contribution to the energy
density in comparison to both EM

r and EM
θ as ρ→ 0. In

comparison, both cross-sectional electric-field compo-
nents EM

r and EM
θ make an equal contribution to the en-

ergy density W as ρ→ 0. In terms of Cartesian
coordinates, both EM

x and EM
y make an equal contribution

to the energy density in Eq. (6.4). In other words, perfect
circular polarization prevails as ρ→ 0, thereby being a
symptom of optical singularity [5, 21, 32].
Therefore, it is proved that sMz →1 as ρ→ 0. This point

can be understood alternatively from Eq. (6.6) as follows

szj j→ 2 εj j Erj j Erj j
εj j Erj j2 þ Erj j2� � ¼ 1

∵
Erj j→ Eθj j
Hzj j→0

� �
as ρ→0

: ð6:13Þ

Thirdly, sMz ≠sDz across the M-D interface, which is rele-
vant to the spin-orbital interaction taking place across
material interfaces [7, 38]. This jump in the specific spin
can be understood again in terms of the analogy to fluid
dynamics. In other word, there should be a sudden jump
across an interface from the side of a larger-viscosity
fluid to the side of a smaller-viscosity fluid [20].
However, there exist sign changes in sMz −s

D
z as m is

varied. The reason is that our three interface conditions
of εMEM

r ¼ εDED
r ; EM

θ ¼ ED
θ , and HM

z ¼ HD
z cannot be

directly translated into the traditional fluid dynamic
interface conditions. In this regard, the fluid dynamic
conditions between a solid and an adjoining fluid may
be either perfectly sticky adherence or no slips [19].
Figure 7 shows the jump in the specific spin Δsz≡sDz
ρ ¼ 1þð Þ−sMz ρ ¼ 1−ð Þ across the metal-dielectric (M-D)
interface. The angular mode index m is increased in
Fig. 7(a) over m = 1,2,⋯,19,20 in increments of one,
whereas it is increased in Fig. 7(b) over m = 21,23,⋯,53,55
in increments of two. It seems that Δsz > 0 only for the
lower angular speeds with m = 1,2,⋯,5,6. In special, the
maximum in Δsz takes place for m = 3. On the other hand,
Δsz < 0 for m ≥ 7, whereas its magnitude |Δsz| appears to
approach a certain limit value as m→∞ as inferred from
Fig. 7(b). This trend should be associated with the limit
behavior in Fig. 3 that A→ 0 as m→∞. We have not
attempted its analytic proof, but we believe that it can be
performed. In addition, this jump is related to spin-orbital
interactions [7, 38].

7. Polarization and two-dimensionality
In polar coordinates, consider a second-order degree of
polarization (DOP) Πrθ,2 for the electric-field compo-
nents on the cross-sectional plane [41].
Πrθ;2≡
Erj j2− Eθj j2
Erj j2 þ Eθj j2 : ð7:1Þ

Therefore, Πrθ,2 = 1 and Πrθ,2 = − 1 refer respectively to
the pure radial and angular polarizations. On the other
hand, Πrθ,2 = 0 refers to the perfect circular polarization.
Traditionally, Πrθ,2 has been called the in-plane
polarization [7].
Figure 8 shows Πrθ,2 for the four values of m = 1, 2, 4, 10.

Figure 8 looks quite similar to that of the specific spin sz
in Fig. 6. Of course, the optical vortices can be seen
where sz→ 1 in Fig. 6 and where Πrθ,2→ 0 in Fig. 8
both as ρ→ 0 [5, 21]. Here, a phase singularity takes
place and a perfect circular polarization applies as
summarized in Eq. (6.13).
However, upon closer look at both figures, the loca-

tions where sz = 0 in Fig. 6 are irregularly spaced,
whereas the locations where Πrθ,2 = 0 in Fig. 8 are rather
regularly spaced. Those locations are of course do not
coincide. Therefore, sz and Πrθ,2 are certainly unequal,
thereby negating the traditional notion that the electric-
field polarization is the same as the light (specific) spin.
Prompted by the upper bound on |sz| defined through

both Eqs. (6.6) and (6.7), we introduce two additional
degrees of polarization Πrθ,1 and Πrθz.

Πrθ;1≡
Erj j− Eθj j
Erj j þ Eθj j : ð7:2Þ



Fig. 9 a The radial profile of the vectorial degree of polarization in
the polar coordinate Πrθz for the four values of m = 1, 2, 4, 10. b The
profile for sz + Πrθz

Fig. 8 The radial profile of the second-order degree of polarization
in the polar coordinate Πrθ,2 for the four values of m = 1,2,4,10
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Πrθz≡
εj j Erj j− Eθj jð Þ2 þ Hzj j2
εj j Erj j þ Eθj jð Þ2 þ Hzj j2 : ð7:3Þ

Here, Πrθ,1 is a first-order DOP, in comparison to the
second-order one Πrθ,2 previously defined in Eq. (7.1).
As a result, the vectorial DOP Πrθz is an extended

form of Πrθ,1 by accounting for the vectorial nature of
the total field (Er, Eθ, Hz) of our TM wave. Of course,

Πrθz contains the weighting actor
ffiffiffiffiffi
εj jp

for both Er and
Eθ in comparison to one (for our non-magnetic media
with

ffiffiffi
μ

p ¼ 1) for Hz. The bound on the specific spin in
Eq. (6.7) now reads as follows.

szj j þΠrθz≤1: ð7:4Þ
Figure 9(a) presents the radial profile of Πrθz for the

four values of m = 1,2,4,10. We find that Πrθz in Fig. 9(a)
looks like something in between |sz| in Fig. 6 and Πrθ,2

in Fig. 8. Meanwhile, Fig. 9(b) displays the radial profile
of the sum sz +Πrθz, thus exhibiting the sharpness of the
upper bound in Eq. (7.4).
Through the coordinate transforms Ex = Er cos θ − Eθ sin

θ and Ey = Er sin θ + Eθ cos θ, Πrθ,2 in Eq. (7.1) can be
transformed into the following DOP Πxy in the Cartesian
coordinates.

Πxy≡
Exj j2− Ey

		 		2
Exj j2 þ Ey

		 		2 : ð7:5Þ

Figure 10 shows Πxy on the cross-sectional plane of a
nanowire for m = 4,10. Here, ξ≡x/R and η≡y/R, and
hence ξ2 + η2 = ρ2. The white horizontal and vertical
lines indicate respectively η = 0 and ξ = 0. The more
reddish and bluish colors correspond respectively to lar-
ger and smaller values of Πxy. Hence, the color change
corresponds to the circular polarization. The strongest
red color corresponds to Πxy = 1 for the x-polarized elec-
tric field, whereas the strongest blue color corresponds
to Πxy = − 1 for the y-polarized electric field.
A common feature of both panels in Fig. 10 is that the

interior exhibits a rather monotone trend in the radial
direction. This is consistent with both Figs. 6 and 8 with
a similar monotonic evanescent feature in the interior
[8, 32]. In comparison, the exterior reveals characteristic
sinusoidal undulations again as in Figs. 6 and 8. Another
common feature in Fig. 10 is that the whole Πxy -pattern
is twice periodic in the angular direction due to cos(2θ)
and sin(2θ).
Let us tell the difference between the two panels of

Fig. 10. To this end, a red broken line is drawn on each
panel on the first quadrant. It is thus found that the
angle subtended by this broken slant line and the hori-
zontal axis is visibly less than 45° in Fig. 10(a) for m = 4,
whereas it is almost 45° in Fig. 10(b) for m = 10. There-
fore, the rotational strength alters the handedness of
circular polarization characteristics to some degrees.

8. Angular-mode dynamics
Michael Berry [4] suggested in 1975 a necessity of taking
the incoming energy absorption into account in his
treatment of gently curved bends, for which he suggested
m ∈ℝ as well. Since then, curved surfaces have attracted
researchers involved in waveguides design [14, 26]. We



Fig. 10 Degree of electric-field polarization Πxy(ξ, η) in Cartesian coordinates for m = 4, 10
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employed a commercial software Mathematica® so that
there is no constraint on m. Hence, m is relaxed to take
real values, viz., 0 ≤m ∈ℝ. In this way, a continuous tran-
sition in A(m) is obtained, which we call “angular-mode
dynamics. See Fig. 3 for reference.
Figure 11 displays one of such curves, for instance,

over the range 1.613 ≤m ≤ 3.1. To this goal, ten of m’s are
prepared according to mj = (0.93)jm0 with j = 1,2,⋯,9.
With the starting m0 = 3.1, the trailing m9 = 1.613 is
obtained. Different colors are assigned to the dots with
the head in red and the tail in blue so that a comet-like
dot chain is constructed.
Based on the same technique employed for drawing

Fig. 11, Additional file 1 is generated by increasing the
Fig. 11 The scaled asymmetry parameter Ã with successively varying
0≤m ∈ℝ a with the starting m0 = 3.1, and b with the starting m0 = 20.
Here, Ãr≡ sgn(Ar)|Ar|

0.15 and similarly for Ãi
starting m0, but with a slightly different scaling. Let us
briefly explain how Additional file 1 is constructed. After
its inception with m0 = 0 below the axis at Āi = 0, a
comet with increasing m0 appears to make three turns
(two across the Āi = 0 -line, and one below it) before ap-
proaching the origin. In general, it is found from
Fig. 11(a) that there is an abrupt stepping over the line
at Āi = 0. With m = 20, the small Fig. 11(b) is prepared
on the lower right corner of Fig. 11(a).
It is found from Fig. 11(b) that Ā→ 0 or A→ 0, thus

signifying an equal importance of both incoming and
outgoing waves. From further numerical computations
we confirmed that Ā→ 0 or A→ 0 as m→∞. It is
because large rotations render relatively insignificant the
difference between the two types of waves in vacuum.
This limit behavior is related to the limit behavior of the
spin jump Δsz as m→∞ in Fig. 7(b).
Both from a closer counting on Fig. 3 and from

Additional file 1 we find that the crossings over Āi = 0 take
place only between the four pairs of integer m’s: (0,1),
(1,2), (2,3), and (4,5). In special, no crossing occurs for the
pair (3,4). Obviously, there are no more crossings
after m = 5 either. The crossing condition is equiva-
lent to Ai = 0 by definition, for which we computed
the four roots for the pairs of (m, Ar):

0:341; 61:7ð Þ
1:44; 0:0167ð Þ
2:70; 54:5ð Þ
4:26; 0:0229ð Þ

:

8>><
>>:

ð8:1Þ

All these pairs do not refer to realistic neutral states,
because of the non-integer m. Recall that a non-integer
m refers at most to curved bends or partial arcs, because
it does not satisfy angular periodicity.
Take the pair (m, Ar) = (2.69683, 54.5273) in Eq. (8.1)

as an example, which is accurate to within six valid
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digits. Its value Ar = 54.5273 lies by far margin off the
range 0 ≤ Ar ≤ 2, which is employed for Fig. 11 and all
the frames of Additional file 1. We tried hard to capture
this state by successively drawing more frames around
m = 2.69683 as seen from Additional file 1. These trials
were not quite successful, thereby ushering us to a belief
that the crossing between 2<m <3 is really wild one. As
a result, we can infer both rareness and eventfulness of
our rotationally propagating waves with integer angular
mode indices.
We emphasize that our whole purpose of displaying

the angular-mode dynamics with 0 ≤m ∈ ℝ as shown
in Fig. 11 and Additional file 1 is not to claim that
m ∈ ℝ are valid physical values. Instead, we reaffirm
that m ∈ ℤ employed in separating given PDEs into
ODEs is really the correct one in conformity to the
angular periodicity. In other words, the discreteness
represented by m ∈ ℤ refers to rare and possibly stable
events instead of the possibly unstable continuum
represented by m ∈ ℝ. We suppose that a pertinent
stability analysis will require a separate study.
9. Discussions
In the latter part of Section 2, a set of simple analysis and
computations has been carried out for lossless metals with
εM = –8.93, viz., with Im(εM) = 0. Compare this to our
standard data in Eq. (2.6). In case with εM = –8.93, the ra-
dial Poynting component vanishes throughout, namely,
PM;D
r ρð Þ ¼ 0 for all 0 ≤ ρ <∞. In conformity to Eq. (5.7),

we found numerically that Ar = 0 and Ai ≠ 0. Therefore,
both incoming and outgoing waves are of the same magni-
tude, but they are of different phases. In addition, light
spins are identically zero, including Sz = 0. Therefore,
most of the non-trivial results shown in this study are
indeed loss-induced due to Im(εM) ≠ 0, while being
gain-compensated.
Another issue as regards plasmonic waves arises from

εM ∈ℂ, where Im(εM) incurs energy dissipation due to
lossy metals. This causes a great difficulty in construct-
ing a proper formula for energy density via, for instance,

terms like εM E
→
M

� 
�
⋅E
→
M≡εM E

→
M

��� ���2. Here, both subscript

and superscript mean “metals”. It is obvious that

εM E
→
M

��� ���2 cannot make up an energy content since

εM E
→
M

��� ���2∈ℂ . For lossless dielectric media such as

vacuum with εD > 0, εD E
→
D

��� ���2 > 0 , thereby causing

no problem at all [6, 7, 24]. In general, formulating
a proper energy density for lossy media has been a
headache. In this aspect, our remedy in this study

was to handle E
→

with a multiplying factor
ffiffiffiffiffi
εj jp
> 0
for any media with ε ∈ ℂ. This product
ffiffiffiffiffi
εj jp
E
→

works
very well in Eqs. (6.1) and (6.3). Even the modified

Poynting vector P
→
≡

ffiffiffiffiffi
εj jp
Re E

→ �H
→ �

� 

worked fine in

terms of dimensionality. In particular, the directions of
energy flows are preserved since the original unmodi-

fied formula is P
→
≡Re E

→ �H
→ �

� 

.

Processing Maxwell equations with the non-zero field
components (Er, Eθ, Hz) for our TM wave, we came
up with non-zero Poynting components and light spin
(Pr, Pθ, Sz). The complex-conjugate relationship be-
tween (Sz, Pr) stands in a similarity to x + iy≡r exp(iθ)
valid between the cross-sectional Cartesian coordi-
nates (x, y) and the polar coordinates (r, θ). We be-
lieve that these different pairings would impact on
the incipience of axial waves when starting from the
purely cross-sectional planar waves [9]. As an add-
itional comment, spatially global characteristics such
as global specific spins and various global polariza-
tions can be evaluated, but mostly by numerical inte-
grations over the radial range [24].
Let us examine the implications of the two-

dimensionality, where all the field components depend
only on the cross-sectional coordinates (r, θ). The pair
(Hz, Sz) of out-of-plane components is typical of the
strong effects exerted by an axial magnetic field on the
light spin [6, 7, 18]. This interaction between Hz and Sz
is the key ingredient of topological photonics, where
mathematical curiosity unfolds itself with an accelerating
pace in these days [32].
This topological nature is related to the fact that our

cylindrical waves are described in terms of only two
space coordinates. In this regard, notice even in the
absence of metallic loss that wave diffusion takes
place not in three- but in two-dimensional space,
albeit in unbounded domains [16, 40]. In contrast,
Huygens principle holds true not in two- but in
three-dimensional space according to Kirchhoff ’s for-
mula [31, 40]. Therefore, the residual effect due to
wave diffusion could be mixed up with the residual
effect caused by metallic loss in two-dimensional con-
figurations such as ours.
It is amusing to draw another analogy between our cy-

lindrical waves and people living on a flat land [1]. To
this end, let us regard both Er and Eθ as two kinds of
people confined to the cross-sectional plane. Both are
assumed to move only on this flat land with their re-
spective magnitudes and phases. The only way both
kinds of people can communicate with each other is by
the transverse axial component Hz through Eq. (2.3).
Here, Hz is considered to possess its magnitude and
phase not on the cross-sectional plane but along the
out-of-plane axial direction. In this sense, people on our
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flat land are not wholly confined to the flatland, but they
have communication channels via three-dimensional
space.
Let us tell how we became motivated to examine the

current problem. By this way, we hope to pose an open
(mathematical) problem. To this goal, consider a coher-
ent combination of the transverse-electric (TE) wave
with its non-zero field components (Hr, Hθ, Ez) and the
transverse-magnetic (TM) wave with its non-zero field
components (Er, Eθ, Hz) [7, 9, 17, 32, 36]. Notice that
TM and TE waves are oppositely defined in some lit-
erature [11, 16, 32].

Instead of the pair of the electric field E
→

and the

magnetic field H
→
, consider a pair of two generic vec-

tors A
→

and B
→

in three-dimensional space. In other

words, A
→
; B
→
∈ℜ3 or A

→
≡ Ax;Ay;Az
� �

and B
→
≡ Bx;By;Bz
� �

in Cartesian coordinates respectively in component
forms. The combined energy is then written to be

WAB≡
1
2

A
→

��� ���2 þ B
→

��� ���2
� �

: ð9:1Þ

Among possible quantities characterizing such a pair of

vector fields [30, 35]., a generalized spin vector S
→

AB is de-

fined accordingly by S
→

AB≡ 1=2ð ÞIm A
→ �� A

→ þB
→ �� B

→� 


with S
→

AB∈ℝ3 . In extension to the specific light spin
sz≡ωSz/W defined in Eq. (6.5), let us define the gener-
alized specific spin sAB.

sAB≡
S
→

AB

��� ���
WAB

≡
Im A

→ �� A
→ þB

→ �� B
→� 
��� ���

A
→ �⋅ A

→ þB
→ �⋅ B

→
��� ��� : ð9:2Þ

Our concern is then how to prove the boundedness of
sAB. To this end, let us consider the sign of 1–(sAB)

2. By
way of Cartesian components,

A
→ �⋅ A

→ þB
→ �⋅ B

→
			 			2 1− sABð Þ2
 �
¼ A�

xAx þ A�
yAy þ A�

zAz þ B�
xBx þ B�

yBy þ B�
zBz

� 
2

−4 Im A�
yAz

� 

þ Im B�

yBz

� 
h i2
−4 Im A�

zAx
� �þ Im B�

zBx
� �
 �2

−4 Im A�
xAy

� �þ Im B�
xBy

� �
 �2

:

ð9:3Þ

Unlike the inequality in Eq. (6.7), we find it is impos-
sible to prove that |sAB| ≤ 1, without additional informa-
tion such as that obtainable, for instance, form
Maxwell’s equations. The reason is that cross-products
such as Im A�
yAz

� 

Im B�

yBz

� 

are harder to handle in the

fourth-order polynomials in Eq. (9.3).
The dispersion relation for the combined TE and TM

waves is well-known, for instance, as in [9]. Its numerical
solutions are easily obtainable as well. Our own compu-
tational results show that |sAB| ≤ 1. But, its analytic proof
as attempted by Eq. (9.3) cannot be made, thus being left
as an open problem.

10. Conclusion
In summary, we have revisited the plasmonic resonances
around a metallic nanowire, but in the presence of both
energy absorption and energy radiation. According to
several analytical formulas derived in this study and at-
tendant computational data, the Poynting vectors, trans-
verse light spins, and electric-field polarizations are
found to show interesting new features according as the
energy exchanges are taken into consideration. In par-
ticular, an upper bound was analytically found for spe-
cific spins. The neutral states implying energy balances
were examined for their stability. All the analytical tools
we have developed in this study would serve as stepping
stones on which we could build more exquisite and deli-
cate formulas as problem complexities increase and
hence solutions to Maxwell’s equations are harder to be
obtained.

Additional file

Additional file 1: This Additional file is generated by increasing the
starting m0, but with a slightly different scaling. After its inception with
m0 = 0 below the axis at Āi = 0, a comet-like connecting curve appears to
make three turns with increasing m0 before approaching the origin.
There are two of such turns across the Āi = 0-line, and a single turn
below the line Āi = 0-line. How each frame is generated is explained as
the caption for Fig. 11. (MP4 4826 kb)
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