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Abstract

Annealing furnaces are used to heat steel in order to change its chemical structure. In this paper we model an electric
radiant furnace. One of the major defects in steel strips processed in such furnaces is a wave-like pattern near the
edges of the strip, apparently due to extra heating near the edges. The aim of the paper is to model this effect and
provide a way to calculate the elevated temperatures near the edges. We analyse two processes that are suspected to
contribute to uneven heating. The modelling involves an asymptotic analysis of the effect of heat flux at the edges
and a detailed analysis of the integral equations associated with radiant heat transfer in the furnace.
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1 Introduction
The high temperatures within a steel annealing furnace
preclude any reliable way to take measurements of the
temperature; hence the need for mathematical models so
that the temperature can be computed. We model an elec-
tric radiant annealing furnace with length of order 100
metres through which strips of steel sheet pass at speeds
of up to 130 metres per minute in order to achieve the
strip temperatures required for annealing. A schematic
diagram of the furnace is shown in Fig. 4. The tem-
perature along the furnace is controlled by varying the
power supplied to the heating elements and the line speed
through the furnace is reduced for strips of large thickness
and width in order to achieve the required temperatures
within the steel strips. At the beginning of the annealing—
coating line there is an automatic welding process which
welds the beginning of a new coil of steel sheet to the end
of its predecessor, allowing the line to run continuously.
Occasionally the edges of the strip may take a wave-like
shape after passing through the furnace and this seems to
be a result of extra heating at the edges of the strip. This
hypothesis is supported by a COMSOL" model of the sys-
tem [1, 2] which shows a trend in increasing steel strip
temperatures closer to the edges. The goal of this paper is
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to gain a better understanding of the nonuniform heating
of the strip across its width.

The furnace has already been modelled in a recent
Mathematics-in-Industry Study Group (MISG) meeting
[5]. However the model developed in that meeting was
based on an assumption of uniform heating across the
width of the strip and is thus unsuitable for explaining
such defects. There is a very limited amount of modelling
of such furnaces in the literature. Apart from the papers
already cited, perhaps the closest work is [10] which
also takes into account the radiative heat transfer within
a mullti-zone annealing furnace. However, although the
model in [10] is more detailed than that given in [5], it
also makes the approximation that the strip temperature
does not vary across its width. Other related models con-
cern an electric furnace model for crystal formation in the
papers by Pérez-Grande et al. [7], Sauermann et al. 8],
Teodorczyk and Januszkiewicz [9].

Because of the high temperatures within the furnace,
radiant heat transfer is the primary mode of heat trans-
fer. This is discussed briefly in the MISG paper [5], but
for a complete discussion we cite some standard texts
by Incropera and DeWitt [4], Modest [6], Siegel and
Howell [3].

As a starting point to our modelling, we briefly sum-
marise what was done in [5]. The temperature u of the
steel strip is assumed to satisfy the heat equation
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where

e the region of space occupied by the strip is

S={(x92:0<x<L—w/2<y<w0<z<h}
(2)

e L is the length of the furnace;

e x measures distance from the point of entry of the
strip into the furnace, z is a distance coordinate in
the vertical direction and y is a distance coordinate
across the strip;

e v is the velocity of the strip through the furnace;

e wand h are respectively the width and thickness of
the strip.

® ps, Cs and kg are the strip’s density, specific heat
capacity and heat conductivity respectively.

The functions w and / are typically piecewise constant
functions of x and ¢ and v can vary with time, but in
this paper we limit our analysis to the desirable steady
state operation of the furnace for which these variables are
constant.

Equation 1 is supplemented by an initial condition

ux,9,2,0) = uo(x,5,2), &2 €S,

and boundary conditions. It is assumed that the steel
strip enters the furnace at x = 0 at constant temperature
Ty, giving the Dirichlet boundary condition,

u(0,y,z,t) = To.

Mathematically, it is also appropriate to specify a
boundary condition where the strip exits the furnace at
x = L. One could propose a model leading to an appropri-
ate boundary condition there. However we will see soon
that heat conduction in the steel strip in the direction of
the x-axis is very small, which means that the term involv-
ing % can be neglected everywhere except in a small
boundary layer near x = L. Physically, heat is not con-
ducted quickly enough for the temperature of the part of
the strip that has already left the furnace to affect the tem-
perature within the furnace. Thus, any boundary effect at
x = L is not expected to be significant and thus we do not
attempt to model it.

Boundary conditions on the remaining parts of the
boundary of S arise from conservation of energy, which
requires that we equate the normal component of the
heat flux —ksVu to the flux of radiant energy leaving the
surface. Thus we write

9 9
Koo ) = Gais) Ks oo (52,00 = By, ()
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for (x,y) € (0,L) x (—w/2,w/2), and

u u
ksaf(x, w/2,2)=¢c(%,2), ks—x,~w/2,2) = —¢g(x,2),
y ay
(4)

for (x,z) € (0,L) x (0, k). The incoming surface heat fluxes
®a> bb, ¢c and ¢, are determined by considering an energy
balance of the radiation within the furnace.

We can determine the relative importance of the differ-
ent terms in Eq. (1) by using dimensionless coordinates
X =x/L,y =y/w,z = x/h, t = tv/L, where h and w are
typical values of the thickness and width of the strip. In
terms of the dimensionless variables, the equation takes
the form

ou n ou _ w? 3%y N 9%y n w2 92y
ar - ax  \IL?20x*  9y* K2 8z2)’
where
kgL
= o2 - (5)
vpsCsw

Taking the typical values L = 150 m, v =2m s~ 1, w =
0.5m, 7 =0.5mm, ks =50 Wm~! K1, Cs =500] Kg!
K~! and ps = 7854 Kg m~3 gives § = 3.8 x 1072 and the
equation

du B _ 010888 Lo 1038% Lag 1032k
—= T = = 4.zX = O X = O X porait
ot 0% 9x2 072 072

(6)

which was the justification in [5] for neglecting the heat
conduction terms for the x and y directions in (1). Note
however that boundary conditions must be satisfied, so
one expects boundary layers near y = +w/2 where the
boundary conditions are satisfied. We wish to investi-
gate these particular boundary layers to see how much
they contribute to edge heating. Thus we depart from the
analysis in [5] by retaining the terms involving 327’2‘. How-
ever, as in [5], we neglect the term involving % and any
associated boundary layer for reasons discussed earlier.

Thus (1) simplifies to
ou  ou %u  0%u
Cs|—+v—|=ks|—+—), t>0, (%9, S.
Ps S(3t+vax) 5<3y2+az2> >0, %2 €
7)

A further simplification results by considering the tem-
perature of the strip averaged over the z-direction:

1 h
T(x,9,t) = Z/o u(x,y,zt) dz.

Equation (7) then leads to

oT aT 0%u
Cs| —+v— )=k
oS S(8t+vax) S

2dg
== 8
" +— (8)
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where @y is the average of the fluxes of heat entering the
upper and lower surfaces of the strip:

® 1 P w1
s=3 [ 32]2_0 =5 + dp).
®dy is calculated by considering the energy balance of the
radiation within the furnace.

The relatively large coefficient of ?)273‘ in (6) indicates that
we can use the approximation u(x,y,z,t) =~ T(x,y,t) in
our calculations. Thus we consider a model consisting of
Eq. (8) with an initial condition

T(x,9,0 =gkxy), O0<x<L, —w/2<y<w/2
)

and boundary conditions
TO,y,t) =Ty, t>0, —w/2<y<w/2, (10)

T
s (@ w/2) = Py, 0<x<lL, (11)
y
where dDg and @ are the average radiant heat fluxes
arriving at the edges of the strip.

1 (h 1 (h
P () = fo ax2)dz, () = fo ¢c(%,2) dz.

The physical problem has reflectional symmetry
through the x-z plane, so we assume that CI>}5|r =d, = .

We wish to investigate two effects that could lead to
edge heating of the strip. The first is the creation of a
boundary layer near the edges y = +w/2 due to the
boundary condition (11) there. We do this in Section 2.
The second effect is a variation of ®g in the direction of
the y-axis that might explain extra heating near the edges.
This requires a detailed analysis of the radiation heat
transfer problem to calculate ®s. We do this in Section 3.
For the boundary layer analysis of Section 2 we use a
simple approximation for ®g that is independent of y.

2 Analytical treatment of edge heating

The following approximate expression for &g, the heat

flux entering the upper and lower surfaces of the strip, was

derived in [5].

eso (Ty — T1)

es(1 —ew) w’
€w p

(12)

dg =
14

where €5 =~ 0.2 and €y ~ 0.9 are the emissivities of
the strip and furnace materials respectively, o = 5.670 x
1073Wm=2K~* is the Stefan—Boltzmann constant and p
is the sum of height and width of a cross-section of the
space inside the furnace. The temperature of the furnace
walls and heating elements is assumed to be the same and
is given by Ty. We note that this flux does not vary across
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the width of the strip. Smaller emissivities are associ-
ated with more reflective surfaces, which lead to a greater
amount of reflection of radiant heat energy arriving at a
surface.

®F, the heat flux absorbed at the edges, is expected to be
greater than ®g because the steel strips are formed by cold
rolling of steel which results in a rougher, less reflective
surface at the edges.

We limit our analysis to the steady state operation of the
furnace. This simplifies the analysis because it allows us to
approximate the heat flux ®g using the power supplied to
the heating elements. For the non-steady state operation,
one needs to take into account the heat dynamics that
occur near the inner surface of the furnace walls, which
are coupled to the dynamics of radiant heat transfer and
heat transfer within the steel strip. For steady state oper-
ation, one can simply use the fact that the furnace walls
are very good insulators and neglect the heat lost through
them.

We thus seek steady state solutions of Egs. (8), (10) and
(11). In order to get a closed-form expression for the solu-
tion, we assume in Section 2.1 that pg, Cs, k, @5 and ®f are
all constant. We analyse the more general case for which
these quantities are not constant in Section 2.2.

2.1 The case of constant psCs, k, ®s and ®¢
In terms of the dimensionless variables x = x/L, y = y/w,
T = Thg’%cs, Egs. (8), (10) and (11) become

aT 9T

=8 +2, 13
% 352 + (13)
T(0,5) = To, (14)
aT h o1

S E1/2) =+ L. (15)
ay w Pg 8

Here, Ty = Toth‘)’%cs and § is given by (5). In these
equations, 0 <x < land —1/2 <y < 1/2.

We note that /7/w and § happen to be of the same order
of magnitude for this industrial application, so the non-
dimensional flux term in (15) is of order 1. This indicates
that boundary edge heating is significant. However, § is
small, so we expect that the temperature of parts of the

strip not close to the edges satisfies

a7y

=2, 16
0% (16)
T1(0,%) = To, (17)

which immediately gives

T1(%,5) = To + 2%.



Taylor and Wang Pacific Journal of Mathematics for Industry  (2017) 9:5

We seek the steady state solution of the whole system
(13)—(15), sowe set T = To+2x+ T> and see that Ty must
satisfy

oT: 02T
N R (18)
0x 052
7>(0,7) =0, (19)
T hdp1
=4 £ (20)

w dg

We expect fz to remain close to zero, except in bound-
ary layers near y = +1/2, so we write j = §1/2¢ —1/2. The
scale factor §1/2 for this inner variable ¢ is chosen so that
heating near the edge y = —1/2 is given by the equations

0T, 0T

7} _ 72, (21)
0x 9r2

Ty =0, forkx=0, (22)
9T hop 1

—= . 23
a¢ w dg §1/2 @3)

Outside this boundary layer, the solution must match
the outer solution and for this we use the simple match-
ing condition T — 0 as { — oc. The solution is easily
obtained by taking the Laplace Transform with respect to
the x variable,

00 ~
F(s,0) = f Ty(%, e dx, withy =8Y2¢c —1/2.
0

Equation 21 then gives sF = F;;, from which we find
that

_h®e 1 e
F(S’C)_WCDS\/SB’_(SB .
This gives
.1 hdg 1 hdp  (§+1/2 )
T = = WK) = —=— ’ ’
2ﬁw¢w<:)f¢s<ﬁx
(24)
where
- R \f ¢
vem=e(o(e) ) o)
(25)

and erf represents the error function,

2 z &
eI’f(Z) = ﬁ‘/o e ds.

A similar expression approximates the boundary layer
near y = 1/2. One can combine the inner and outer solu-
tions to obtain a composite approximation for the steady
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state solution of (13)—(15), valid for —1/2 <y < 1/2:

1 hdop [ (§+1/2 . 12— _
e 2 (428) 0 (2724)

In terms of the original variables, one finds that the
boundary layer penetrates to a distance

ksx
vpsCs

2

and the increased temperature at the edge is

X
b [ ——m—.
EV wksvpsCs

We use these equations to plot an example of increased
strip temperature near an edge in Fig. 1. The calculations
for the figure use & = &g but in fact we expect & >
dg because the upper and lower surfaces are very smooth
and are thus expected to have a lower emissivity than the
edge surfaces. Thus we expect the edge temperatures to be
greater than those shown in the graphs. Also used in the
calculations are the values ks = 50 Wm™1K~1, Cg = 500
JK~1Kg™1, Ty = 573 K, ps = 7854 Kgm™3, h = 0.5 mm,
w=05mv=2ms!,L=100m & = &5 = 1500
Wm~2.

2.2 The case of variable pg, Cs, k, &5 and ®f

In this section, we wish to follow the analysis of
Section 2.1, but now in the more realistic setting of vari-
able ps, Cs, k, @5 and ®f. In practice, the large tempera-
ture variation within annealing furnaces requires that we
take into account the temperature variation, especially of
Cs and ks, and to a lesser extent, ps. The variation of Cg
and ks with temperature, shown in Figs. 2 and 3, is taken
from data in [4]. Figure 3 shows that heat conductivity is
approximated well using linear regression:

ks = 73.9823 — 0.04377T, (26)

and Fig. 2 shows the C,, data approximated by an interpo-
lating quartic:

Cs = 345 — 0.504333T + 0.0048957>

(27)
—9.06667x107°T3 + 5.5x107°T*.

To allow for such variations, we assume that pg, Cs and
ks are known functions of the strip’s temperature. Fur-
ther, because our system is at equilibrium, &5 and ®f are
assumed to be known functions of x which can be cal-
culated by measuring the power supplied to the heating
elements in the vicinity of a distance x along the furnace.

The form of Eq. (1) is only valid for constant diffusivity
ks. With variable ks, we must instead write

ou ou .
psCs +v— | =V.(ksVu). inS x (0,00).
at ax

(28)
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Fig. 1 The effect of radiation arriving at an edge. The actual effect is expected to be greater than this because of the higher emissivity of the edges

Consequently, instead of (8), we have

oT aT a aT 2dg
Cs| — — )= —ks— —_.
Ps S<8t+vax> 8y<53y)+ 7

Hence the steady state temperature must satisfy

(29)

T 92T aT\? 205
Csv— =ks(T)—= + ko(T) | — —, (30
psCsv S()ay2+5()(ay)+ 7 (30)
—w/2 <y <w/2,

T(O’y) = TO) (31)

aT
+ ksa—(x, +w/2) =P, 0<wx <L (32)
y
As before, the small diffusivity indicates that for y not
close to +w/2, T(x,y) ~ Ti(x), where T satisfies the
ordinary differential equation

Cp

1100
1000
900
800
700
600

T
900 1000

200 500 600 700 800

Fig. 2 Variation of C,, (J/Kg.K) for steel with absolute temperature T in

Kelvin

2P
ps(T1)Cs(TLVT) (x) = Z(’“),

T10) = To.  (33)

As before, it is useful to consider a new dimensionless
variable X, this time chosen to make the coefficients of
Eq. (32) more similar to those of the constant coefficient
case. We do this by choosing x to be the solution to

L@ _ ks(T1)ps(To)Cs(To)
dx ks(To)ps(Tl)CS(Tl),

where T7 = T1(x). We also lety = y/w.
In terms of these variables, Eq. (30) takes the form

x%(0) =0,

ksTpsT)Cs(T) 8T _ 8°T

ar kg(T) <g>2 2PsksToL
ks@ps@T)Cs@T1) 0%~ 952 ks(T) \ 3y

hvpsTo)CsTo)ksT)’
(34)

where § is again given by Eq. (5), but with ks, ps and
Cs evaluated at temperature T. Finally, we choose a
dimensionless temperature
~ h
7 — p'ves(To)Cs(To)
dL

’

where @y is the average of ®g,
_ 1 L
&g = */ Dy (x) do.
L Jo
Equation 34 becomes
ks(T1)ps(T)Cs(T) ﬁ _
ks(To)ps(T1)Cs(Th) 0%

ks(T) 02T
ks(To)  85?

DL kg(T) g : 205
hvps(To)Cs(To) ks(To)\ 37 ) ~ @
(35)
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Fig. 3 Variation of the heat conductivity k (W/m.K) for steel with absolute temperature T in Kelvin

The dimensionless solution of Eq. (35) corresponding to
the solution 77 of Eq. (33) is given by

dgL
hvps(To)Cs(To)’

S T1(x)
T; = —,
1(x) T

where T =
and this corresponds to a solution outside boundary lay-
ers.

As in Section 2.1, we set § = §1/2¢ —1/2; ¢ is our bound-
ary layer variable near the edge y = —1/2. We also write
T=T% + Th@& ). Rewriting the boundary condition
(32) at this edge in terms of the new variables gives

9T

_ h Ppks(To) 1
0|,

W Dsks(T) 32" (36)

It is very desirable for the industrial application that
edge heating is very small. This is consistent with our
observation that the physical parameters happen to be
such that 1/w = O(8), and thus the right-hand-side of (36)
is 0(61/2). In any case, we assume that

e
w

12 _

is small and we write Tg(fc, 0) = €0(% ¢) + O(e?). This
allows us to use a first order Taylor approximation to
ps(T), expanded about the point T = T7,

ps(T) = ps(T1) + eps(T1)TO, ¢) + O(e?).

We use similar approximations for Cs(T) and ks(T).

Recalling that 8/07 = 8§~ /23 /3¢, we expand Eq. (35) up
to O(e) to find that 8 must satisfy

(pgm) Cg(T1)> ATy, 00 _ 0% -
ps(T1)  Cs(T1)) 0x 0x 9%
Equation 37 may be simplified by setting
ps(T1)Cs(T1)
y = BV (38)
ps(To)Cs(To)
and we find that x satisfies
P 2
ax _ 9%, (39)
ox  9r2
The flux boundary condition (36) translates to
d D ks(T T1)Cs(T
X __ DEks(To)ps(T1)Cs(T1) —fG).  (40)

ey s ks(T)ps(To)Cs(To)

x must also satisfy an “initial” condition, x(0,¢) = 0, and
a matching condition, x (x,¢) — O0as { — oo.

The solution of this system, readily found by use of the
Laplace transform, is

X Go) = /0 2(6,0)f G — o) do, (41)

where g(£,%) = % — e ¢*/% /7% and ¥ is given by
Eq. (25).

In summary, we have found that there is a boundary
layer near the edges of the strip. Outside the boundary
layer, the temperature T of the strip, at a distance x along
the furnace, may be found by solving the ordinary differ-
ential Eq. (33). With T71(x), we may then calculate f(x)
from (40) and then x from (41). This gives us 6 from (38).
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The actual perturbation to the temperature near the edge
y = —w/2 is given by

Ty =TTy =Teb(, ).

3 Furnaceradiative heat transfer analysis

3.1 Assumptions

The radiative heat exchange between the furnace inner
surface and the strip is considered in this section. The
schematic geometry of the problem is presented in Fig. 4
which shows the cross section and the side view of the
furnace and the strip. The furnace is modelled as a hol-
low rectangular box with length much larger than the
dimensions of the cross section. The heating elements are
assembled on the top and bottom inner surfaces of the
furnace. We make the following assumptions about the
radiative heat transfer within the furnace.

1. The heating elements are distributed uniformly over
the top and bottom inner surfaces and the the density
of the input electric power is specified as a constant.

2. All surfaces are considered opaque gray. All surfaces
emit and reflect radiation diffusely; the typical
emissivity of the furnace wall surface and the heating
element is eyy = € = 0.9 and of the strip is s = 0.2.
For an opaque gray surface, the reflectivity p and
emissivity € are related by p =1 — €.

3. Temperature changes within the furnace are gradual
and radiative and thus convective heat transfer along
the length of the furnace can be ignored. The strip
temperature at the entry of the furnace is at room
temperature and it can reach up to 700 °C at the last
heating stage, which is still significantly lower than

a
Strip h=1m
w=1m
W =1.7m ) )
Moving strip

Furnace length: 100m

Fig. 4 Sketch of the furnace; a cross-section, b side view
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the temperature of wall surface and the heating
elements. Considering that the radiative power is
proportional to the fourth power of the temperature,
the dominant radiation is from the wall surfaces and
the heating elements.

These assumptions simplify the analysis and are reason-
able for a furnace with brick covered wall and a steel strip
with rough surface finishing. For a steel strip with smooth
surface finishing, a partly specular reflection model shall
be considered.

We use these assumptions to develop a two dimensional
model of the temperature distribution within the furnace.
The model is two dimensional only in the sense that it
relies on the approximation that there is only a gradual
variation of temperature in the direction of the moving
strip.

We are interested in temperature variations across the
strip and for this we must solve a system of integral
equations for the radiative and reflective heat exchange
between surfaces within the furnace.

3.2 Mathematical model

For a diffuse surface, it is well known that the net radi-
ation method can be used to analyse the heat transfer.
This method is discussed in many texts on thermal radi-
ation such as the works of Modest [6] and of Siegel
and Howell [3]. The method, which involves an energy
conservation argument for the absorption, emission and
reflection of radiation inside an enclosure, results in an
integral equation.

Let g(x) be the outgoing heat flux at the location x,
which counts both radiant and reflected heat fluxes. The
governing integral equation in terms of g(x) takes the
form

400 = € T*(x) + p(x) A a(X)dFgx—ax,  (42)
for surfaces where the temperature 7'(x) is given, or

q(x) = p(x) + / q(<YdFjx_ax (43)
A

for the surfaces where the input power flux p(x) is spec-

ified. In the integral equation p(x) is the reflectance of

the surface at x and dF x4y is the exchange view factor

between two surface elements dx and dx’, which is defined

as,

diffuse energy leavingdx directly toward and intercepted by d x’
dFgx—ax = .

total diffuse energy leaving d x

(44)

Note that dx denotes the differential strip element
which, due to the longitudinal symmetry, is infinite in the
x3 direction.
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The diffuse view factor between two infinitesimal strip
elements dx, dx’ located at x and x’ respectively, as shown
in Fig. 5, is given by

cos B sin fdx’ _ [(x1 — &) (%2 — &%) |dxX’

dx —dx’= 37
2r 2 (1 = 2% + (2 = x3)?)

(45)
for perpendicular elements and
sin? Bdx’ d?dx’

2 201 — %) + (4 — x)2)32
(46)

dFdx—dx’ =

for parallel elements, where § are the angles shown in
Fig. 5, d is the perpendicular distance between the two
parallel elements, see [3].

We define the kernel k(x,x’) to be zero if the points x
and x are shielded from each other by another surface,
otherwise it is given by

(1) (e2—x) |
k(xxX) = 2((x1—) )2+a(écz —x)2)3/27

Pt el if x and x’ are on parallel elements.
1 2
(47)

if x and x’ are on perpendicular elements,

The integral equation can be written via kernel k(x, x)
4(x) = e(X)o T*(X) + p(x) / qX)k(x,X)dx’  (48)
A
for a surface where the temperature is given, or

a0 = p0+ [ g )kx i (49)
for a surface where the input power flux is given. The inte-

gral equation uniquely determines the outgoing heat flux
q().
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3.3 Numerical procedure

In general such integral equations do not have a closed
form solution so a numerical method is needed to find
an approximate solution. The integral equation is linear
and the discretised equation is a linear system and can be
solved by a standard LU decomposition. To numerically
solve (48) and (49), all of the surfaces, which because of
the assumption of longitudinal symmetry of the problem,
are one dimensional domains, are divided into sufficiently
small intervals of equal length and the g(x) is assigned on
the nodes g(x;). A standard trapezoid method is applied
to integrate (48) and (49) numerically, resulting in a linear
system with g(x;) as unknowns.

In the actual numerical procedure, however, care must
be taken in the treatment of discontinuities and singular-
ities arising from the singularity of the kernel k(x, x’). Let
us consider why these arise.

1. The k(x,x") function has a discontinuity at the
corner points of the wall arising from the two
different formulas for the parallel and perpendicular
elements. Thus, the numerical integration is
performed on the individual planar surfaces. This
gives a total of six planar surfaces including four wall
surfaces and two strip surfaces.

2. For anode x located on a furnace wall, the kernel
k(x,x') is only a piecewise smooth function of x’ due
to the presence of the steel strip and its shadow effect.
This can be observed from Fig. 6, showing a node x
exposed only to partial heat flux emitted from
another wall surface. The kernel k(x, x’) has jumps at
x) and xj, each of which lies between two
neighboring nodes. The exact positions of x; and x},
can be found from the geometric relation. The
numerical integration is performed only on the
viewable portion of the relevant subintervals bounded
by x] (or x3) and one of the two neighboring nodes.

X2

Fig. 5 Diagram for calculation of view factors

x
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Fig. 6 Shadow effect of the strip

3. Due to the singularity of the kernel k(x,x’), when
two nodes on the neighboring wall are sufficiently
close, the variation of k(x,x") on a single element is
significant for whatever small step size has been
chosen. To overcome this singularity, the following
approximation is applied to these nodes.

Assuming a linear distribution of the g(x) on the

where /1 = |x{ — x| is the step size. This can be
written in terms of g(xj+1) and g(x;)

Xit1
| ke xdx ~ gt + €0k,
X;

where the coefficients Ci(l) and Ci(z) are determined

element (xj, X ;), we may estimate the integral in by
(48) and (49) as ,
) 1 [Xi+1 , ,
¢’ = ﬁ/‘ (h—|x —x;Dk(x,x’)dx’. (51)
X
f 1 k0w ~ | / " (g and
Xk (x, X")dx’ ~ — X ,
X q h X, q i+l (50) (2) 1 xi+1 , , , ,
! e N o C” = f/ Ix" — x;lk(x,x")dx/, (52)
—q(xp)|1xX" — x;| + q(x;)k(x, x")dx hJx
x 10*
15 T
- +
— — — ~0:9 by numerical method e
7
.TE + w=0-9 by formula . +
= _— W=0.5 by numerical method e %
< =0.5 by formul ”
S 10 % =05 by formula e % |
E
S
T
[0}
<
©
c
2
®» 5 E
s
e
2
'_
o Il Il Il Il Il Il Il Il
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Strip emissivity s

Fig. 7 The strip’s total heat influx calculated by the numerical method and formula (55)
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respectively. Adding the I corner elements leads to 4. There are two nodes belonging to two

z , neighbouring walls intersecting at a corner point
Zl/ i1 (@K 1) — GODIX = X+ 4Ok XY denoted by xg, and xg, where S1 and Sy indicate
i (53) the surfaces the nodes belong to. The integration

-1
=C1"q0) + €0, ) + D (G + C2a(d)
i=2

with respect to X’ over the surface S for x = xg,
should be estimated by calculating its value at a
nearby point x¢ € S1, Xc ~ Xs,, and then passing to

I will be chosen to cover all elements affected by the the limit as xc — Xs,. It can be shown
kernel singularity. that
x 10 Top (or bottom) wall total heat flux
11 7
- OO OO O — =
10.5 - - =mTT E
10 S=0.1 b
o _ =05
£
=
c
— 95 i
=
o
9 - -
8.5 i
8 Il Il Il Il Il Il Il Il
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Distance in metres from the left end of the top (or bottom) wall
x 10* Top (or bottom) wall total heat flux
1k =011
s=O.5
10.5 \//
10 1
9
£ ~ _
= S -
- ~
= 95 > e b
X > e
o N s
N -
~ -
9 ~ - i
8.5 i
8 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6
Distance in metres from the left end of the top (or bottom) wall
Fig. 8 Distributions of g(x) on the top (or bottom) wall. The top plot: €y = 0.9; The bottom plot: €,y = 0.5
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1q(xsl) = lim / q(xX)k(xe,x)dx'. (54)
2 Xe—>xs; Jg,

Remark: Equation (54) has a clear physical meaning: A
differential element at node xs, on surface Sy receives half
of the total heat flux which is emitted from a neighbor-
hood of xg, on surface Sj.

3.4 Theisothermal surface case

The numerical model we have developed is used to reex-
amine the isothermal surface case for which the wall
temperature Ty = 900°C and the strip temperature Ts =
500°C. The heat power absorbed per meter length of strip
can be found from the incident heat flux ®; as Q = 2w ;.
From (12), one finds

B 2weso (T, — Tg)
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One notices that the above formula is derived under
the assumption that the temperature and the outgoing
heat flux g(x) are constant on each surface. This can
be observed from the integral equations (48) and (49).
When ¢g(x) is constant, one may move the term g(x’) out
of the integral and leave only the geometric term in the
integrand

| a0rdFicie = a0 [ dFix - ax.
A A

Thus, the heat transfers between the surfaces can be cal-
culated by using the view factor. By solving this problem
with the numerical method developed in this article, we
found that g(x) is actually always varying with the loca-
tion. However, the variations of g(x) across the wall or
strip are not significant. This is particularly true for small
€s, as in such cases, the strip reflectance ps &~ 1 and the

. (55)
14 es(l —ew) w radiated energy from the wall is well reflected by the strip,
€w p and thus g(x) becomes less dependent on the location.
Side wall net heat flux
5000 T T T
4000
§ 3000
= 2000
1000
O Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Distance in metres from the top of the side wall
Top (or bottom) wall net heat flux
15000 T T T T
10000
Ry
£
=
5000
0 ! ! ! ! ! ! ! !
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Distance in metres from the left end of the top (or bottom) wall
x10* Strip net heat influx
1.728 T T T
1.726
R
£
=

1.724

1.722 : : : :
0 0.1 0.2 0.3 0.4

Fig. 9 Net heat influx on the strip and the wall surfaces
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0.9 1
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Figure 7 shows the comparison of the numerical results
and formula (55).

It was found that in the case with wall emissivity ey =
0.5, the difference between the numerical result and (55)
is more significant than the case with ey = 0.9. This indi-
cates that the non uniformity of g(x) in the case ey = 0.5
is larger than ey = 0.9. This is confirmed by Fig. 8, which
shows the distribution of g(x) on the top (or bottom) wall.
In the limit case €y = 1, formula (55) becomes exact, sim-
ply because the reflectance of the wall vanishes and the
integral equation is reduced to algebraic equations from
which (55) is derived.

It was also found that for the case ey = 0.9 and
es = 0.2, which is typical in this application, formula
(55) is fairly accurate. The total outgoing heat flux g(x) is
close to the uniform distribution on each surface. How-
ever, one notices that in contrast to the outgoing heat
flux, which is dominated by the heat radiation generated
by the uniform wall temperature, the net heat flux varies
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significantly across the wall surface. Figure 9 shows the
numerical result for the case ¢ = 0.2 and ey = ¢ = 0.9.

This is not a surprising result because the view factors
of the strip to various wall locations are very different and
the portion of the heat energy emitted from the wall which
is eventually absorbed by the strip is largely determined by
the relative geometric position, or in other words, by the
view factor.

Through these comparisons, we found that the numer-
ical results correctly reflected the geometrical effects due
to the view factor and matched very well with formula (55)
at the limit case €5 ~ 0 as expected. This validates the
numerical method.

3.5 The strip temperature distribution

We now consider the problem of the temperature dis-
tribution of the strip under conditions close to those of
the real furnace. The isothermal model considered in the
previous section shows that the net emitted heat from

©
©
o
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o o
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o
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Fig. 10 Case 1: Ts = 500°C
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the wall varies significantly across the wall surface. In the
actual furnace, the electric heating elements, which are
assembled at the top and bottom wall, are usually equally
powered. Consequently, the temperature distribution of
the heating elements must be varying. Thus, we consider
the modelling problem stated as follows:

1. The power input density of the top and bottom
heating elements is specified as a constant
p = 1.294 x 10* Wm™2, which is typical in this
applications.

2. The side wall surface is considered as a perfect
thermal insulated surface.

3. ew = € = 0.9 and €5 = 0.2, where g denotes the
emissivity of the heating elements.

4. Find the strip surface temperature distribution.

It will be shown that the temperature variation along the
width of the strip is small, less than two percent. Together
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with the fact found in [5] that the coefficient of the y dif-
fusive term was very small, we may assume that the strip
temperature rise is proportional to the net heat influx.
One also notices that the strip temperature T is signif-
icantly below the wall temperature and has only a very
minor influence on the internal heat transfer. Thus the
variations of the strip heat influx along the width at dif-
ferent longitudinal locations are expected to be similar. To
confirm this, we examine two locations where the strip
temperatures are very different, namely, 7s = 500°C and
Ts = 20°C.

1. The strip temperature 500°C.
The numerical results are shown in Fig. 10. It was
found that

2. The temperature of the electric power element varies
from 949°C to 983°C. The temperature variation is
about 3%.

Side wall temperature
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Fig. 11 Case 2: Ts = 20°C
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Fig. 12 The comparison of the net heat influx of the strip for Ts = 500°C and Ts = 20°C

. The temperature of the side wall varies from 949°C
to 956°C. The temperature variation is about 0.7%.

. The strip net power influx varies from

2.186 x 10*Wim 2 t0 2.216 x 10* Wi 2. The net
influx variation is about 1.3%.

. Temperature Ts = 20°C.

The numerical results are shown in Fig. 11. It was
found that

. The temperature distributions of the heating element

and side wall are similar to the case Ts = 500 with a
slightly lower temperature range.

7. The net heat influx of the strip is indeed very similar
to the case T's = 500. Figure 12 shows the
comparison of the two results.

Based on these results, we may calculate the strip tem-
perature along the width by using the strip heat influx
at Ts = 500°C. The result is shown in Fig. 13. The
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temperature of the strip is seen to be varying smoothly
with about 7°C in magnitude. The temperature variation
would be about 1.2°C if the calculation was based on the
isotherm model discussed in Section 3.3.

4 Concluding remarks
We have analysed in detail two effects that contribute to
extra heating of the steel strip at its edges.

The numerical results of Section 3 indicate that the geo-
metrical effect due to view factors would account for an
elevated temperature at the edges of about 7°C.

The analysis of Section 2 took into account the fact
that the edges of the strip are really surfaces themselves.
Although these surfaces are small, they contribute sig-
nificantly to temperature increases at the edges because
the rate of heat conduction away from the edges is slow.
If one assumes that the edges are smooth and have an
emissivity of about 0.2, the same as the larger surfaces
of the steel, then this effect would result in temperature
elevations of about 9°C at the edges. In reality the edges
are much more rough than the rest of the strip’s sur-
face. The actual temperature elevation is proportional to
the emissivity, so an emissivity of 0.5, for example, would
contribute to a temperature elevation of about 22°C near
the edges. Moreover these elevated temperatures occur
within about 1 c¢cm of the edge of the strip, resulting in
potentially damaging high temperature gradients.

Authors’ contributions
SWT was responsible for Section 2, SW was responsible for Section 3. Both
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 15 August 2016 Revised: 1 March 2017 Accepted: 12 April 2017
Published online: 27 April 2017

References

1. Depree, N, Sneyd, J, Taylor, S, Taylor, MP, Chen, JJJ, Wang, S, O'Connor, M:
Development and validation of models for annealing furnace control
from heat transfer fundamentals. Comput. Chem. Eng. 34(11), 1849-1853
(2010)

2. Depree, N, Taylor, MP, Chen, JJJ, Sneyd, J, Taylor, S, Wang, S: Development
of a three-dimensional heat transfer model for continuous annealing of
steel strip. Ind. Eng. Chem. Res. 51(4), 1790-1795 (2012)

3. Howell, JR, Siegel, R: Thermal Radiation Heat Transfer. 5th. CRC Press, Boca
Raton, Fla. (2011)

4. Incropera, FP, DeWitt, DP: Introduction to Heat Transfer. 4th. John Wiley
and Sons, New York (2002)

5. McGuinness, M, Taylor, SW: Strip Temperature in a Metal Coating Line
Annealing Furnace. In: Proceedings of the 2004 Mathematics-in-Industry
Study Group, (2004). http://www.maths-in-industry.org/miis/41/

6. Modest, MF: Radiative Heat Transfer. 2nd edn. Academic Press, SAN
DIEGO, CA (2003)

Page 15 of 15

Pérez-Grande, |, Rivas, D, de Pablo, V: A global thermal analysis of
multizone resistance furnaces with specular and diffuse samples. J. Crystal
Growth. 246, 37-54 (2002)

Sauermann, H, Stenzel, CH, Keesmann, S, Bonduelle, B: High-stability
control of multizone furnaces using optical fibre thermometers. Cryst.
Res. Technol. 36(12), 1329-1343 (2001)

Teodorczyk, T, Januszkiewicz, KT: Computer simulation of electric
multizone tube furnaces. Adv. Eng. Softw. 30, 121-126 (1999)

Zareba, S, Wolff, A, Jelali, M: Mathematical modelling and parameter
identification of a stainless steel annealing furnace. Simul. Model. Prac.
Theory. 60, 15-39 (2016)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://www.maths-in-industry.org/miis/41/

	Abstract
	Keywords

	Introduction
	Analytical treatment of edge heating
	The case of constant bold0mu mumu S CSS CS===============S CSS CSS CSS CS, bold0mu mumu kk===============kkkk, bold0mu mumu SS===============SSSS and bold0mu mumu EE===============EEEE
	The case of variable bold0mu mumu SS===============SSSS, bold0mu mumu CSCS===============CSCSCSCS, bold0mu mumu kk===============kkkk, bold0mu mumu SS===============SSSS and bold0mu mumu EE===============EEEE

	Furnace radiative heat transfer analysis
	Assumptions
	Mathematical model
	Numerical procedure
	The isothermal surface case 
	The strip temperature distribution 

	Concluding remarks
	Authors' contributions
	Competing interests
	Publisher's Note
	References

