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We consider some distributions of one sided maxima of excursions and related variables for standard random walk
and Brownian motion. We propose some new exotic options called meander options related to one of the fragments:
the meander. We discuss the prices of meander options in a Black-Scholes market.
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1 Introduction
1.1 Two-sided maxima for BW and RW
In our previous paper ([3]), distributions of

sup |Be|, sup |B:|, sup |Bl

t<6 t<gp t<dp
and

sup |Zs|, sup |Zy, sup |Z]

t<0 t<go t<dp

were investigated where (B;,¢ = 0) denotes Brownian
Motion (written later as BM), whereas (Z,t € N =
{0,1,2,...}) denotes a standard Random Walk (:RW),
ieeZy = & +---+ & where &j,...,& are iid. and
PE =1 =P =-1)=1/2.

Foru = 0,g, = sup{s < u: B; = 0},d, = inf{s > u :
B, =0} and 0 ~ Exp(%) is independent of BM, whereas
in the RW case foru € N, g, = sup{s S u: Z; =0}, d, =
inf{s > u: Z; =0} and 6§ ~ Geom(l — q) i.e: P(6 = k) =
(1 — q)g* for k > 0) is independent of RW.
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In our previous paper, we also discussed some relations
between the functional equation for the Riemann zeta
function and the maximum of Brownian excursion, as well
as some infinite divisibility properties of dy — g, i.e.:

__m
Vit m+ i

00 d xq —my
=exp —/ (l—ef“x)—x —eidy
0 2xJo 7 \/y(x—y)

where 6 ~ Exp(m), which means that the length dy — gp
of the excursion straddling 0 is infinitely divisible and its
Lévy Khintchin density is the Laplace transform of the
arcsine law x %

For more on these two topics, see, e.g. Biane-Pitman-Yor
[2] and Bertoin-Fujita-Roynette-Yor [1].

In this paper, instead of two-sided maxima, we shall
consider one sided maxima for these fragments and inves-
tigate their distributions.

E (e*ll’(de *ge)) —

1.2 New exotic options called “Meander Option”

Using these mathematical results, we consider some appli-
cation for mathemtical finance. We define “meander
options”, the payoff of which is defined by the meander
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of stock value process above a strike price K before a
maturity time 7. For example,

o Payoff of “meander lookback call option” =
maxg<1<><u<T(Su — K)*, where x* = max(x, 0) and
T =U=

S; is a stock value process, g(TK) = sup{t < T|S; = K}.

The financial meaning of meander lookback option is
the following: If we consider a usual lookback option
(with payoff: maxy<,<7(S, — K)T the price of this option
is sometimes extremely high. So partial lookback option
(with payoff: max,c;(S, — K)™ where J C [0, T] is con-
sidered and sometimes traded. Meander lookback option
is one example of this partial lookback option with closed
price formula.

1.3 Self-explanatory tables for computations
We now present our results in the form of two self-
explanatory Tables.

1.4 Organisation of our paper

In section 2, we indicate how to obtain the formulae for
the distributions of the six maxima in Table 1, either for
BM or for RW.

In section 3, we do the same for Table 2. In section 4,
we apply some of the above results to get the price of the
meander lookback option; to do this, we first compute
at independent exponential time, then invert the Laplace
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2 Computations of distributions for the six
maxima

Notation: For clarity, we write: P(I'||A) for P g)r(rxz)\)

P(I'||X = x) for the conditional law of I', given X.

and

(1) P (sup,<y Bu < A)

PlsupB, <Al =1—P|supB, = A :1—P(9§TA)
uso ul6

(2.

T4 = inf{t : B, = A}

where

(1) P <supu§9 Zy < A)

PlsupZ,<A)=1—-P|supZ, 2 A)|=1-P(02Tx)
uso ulo

=1 —E(qTA)

where T4 =inf{t: Z; = A}

A
transform. =1-a".
Table 1 A list of interesting maxima
BM P(- < A) RW P(- < A)
sup By ~ V6 sup B, T—e M sup Zy 1T—a?
use usi u<se
sup By ~ +/Jg sup by 1T—e 2 sup Zy 1— o
u=ge ust u<ge
b : brownian bridge(b.b.)
sup By ~ €/ — gg supmy HE%M sup 7y 1+1ch
ggSus6 ust g9 Su<e
m : brownian meander
DA
SUpy<g, Bu 1- = sup Z, 1= 3 —— (1—a?)
- u<dp
_p—AA —oA
sup By 1- = sup Zy 1— 1=
0<u<dy 0<u<dy
sup By ~ €/dy — go supey ﬁ - 217 sup - Zy ﬁ %a,ﬂ_a
go Su=dy ust 9o SUSdy

e : normalized excursion

where

o for BM, 6 ~ Exp(A2/2), ie., its density is f4 () = 1(0.00) () % exp — 2%, and P(e = 1) = P(e = 0) = 1/2.

o for RW, 6 ~ Geom(1 — q),ie, PO = k) = (1 — g)q*, (k=10,1,2,...),a =
eforRW, gr=suplust:7,=0}, dy=influ>t:7,=0}.

q

1—4/1-¢?
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Table 2 A list of joint distributions
BM P(- £ ABy edx)

P|supB, < A By € dx
uso

(%e—Mx\ _ %ekxe—Zk max(A,x)) dx

L7 (1 — e=2) dx

*
P| sup By, £ A By € dx
u=ge

P( sup By <A Bg e dx) 5 —Lom Teca (671 — 24 dx

9o Sus6

P (sup By < ABy e dx) (1 - %) 1X§A% (e7*W — =22 gy

u<dp

P< sup By S ABy e dx) (1 - %) 1X§A%e**‘x‘dx

O<u<dy
e x 2)A
Pl sup By < AByedx i Lz s (€M — e M) ax
9o Su=dy

(x) Note: We see on this line that SUPy<gy B, and By are independent.

2) P (suptégg B < A)

P(suth §A) =P(gy S Ta)=P(0 <dr,)
=g

=1-P0 > dr,)

_1_E (exp <_deA>>
1 —E(exp (_fTA))
< E (exp (_fn»

where T4 = inf{t: B, = A}

2Hp (supége Z, < A)

P(suer <A) = P(gg < TA) :P(9 < dTA)
t<g

=1-P(0 2dr,)
-1 (o) =1 £ ()£
=1-—a*.

(3) P (supg <i<o Be S A)

We start with:

PlsupB; < A|P| sup Bi<A)|=P|supB;: <A,
t<go 9 <t<0 <6

since pre-gp events and post-gy events are independent.
(see Revuz-[4], Chapter XII).
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Then, we get:

1—e 1
P| sup B,SA|= =
(ggftI;@ t = ) l_e 24 1o A

3HP (supg9 <t<o Zt < A)

For random walk, we do similarly as with the preceding
argument:

PlsupZ; <A |P| sup Z;<A)=P|supZ; <A].
=g 8o St=0 0
Then we get:

s 7 4 1—af 1
su < = = .
ggtljgf) ! 1— 24 14+a4

@) P (supt§d9 B < A)

P(suth §A> =P(dg STa)=1-P(0 > gr,)
tgdg

1 —E (exp (—2%gr, /2))

e—)»A
=1-—x
sinh AA
1 — 24
= 1 — ,
20A

since E (exp <_}\22gTA>> E (exp (%H(TA _gTA)>) =

E (exp (‘T)‘z TA)) holds.

4) P (suptédg Z: < A)

P(supZt <A) =P(dg <Ta)=1-P(0 = gr,)

téd@
=1 —E(quA)
OlA
=1l
P —

1 1
- 1—77(1—012A>
Aol —«
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(5) P (supp<i<q, B < A)

If x <A,
xt
P| sup B;SA|lBy=x] =1——,
0<t<dg A
wherex™ := max(x, 0).

Clearlyif A<«x, P (sup9§t§d€ B S A||By = x) =0.

Then we get:

A Xt
P| sup Bi=A)| = / (1 — >f39(x)dx
0<t<dy 0 A
A
= / (1 - f) re Mdx
o A

1—e
LA

=1

(5/) P (Supggtgdg Zt < A)

Ifx <A,

Pl sup Z;<Al|lZg=x) = P(To < Ta—x)
0<t<dp

x
=1-=,
A
Clearlyif A < x, P (supgééde Zy S Al|lZy = x) =0.
Then we get:

A
P( sup Zt<A) Z(l—j)P(Zg:k)

0<t<dp k=0
1 1 1—-o4
l1+4a al—a A

where we used the following facts:

R

k=0
2(1 — ad 1 X
_ (_1 i (2:(04) _’_Zaktk>'
) parid k=0
Then
l—«o
P(Zg:k):1+aak, keZ
and we see that
l—a
la«  r—p
P(1Zsl =k) =1 2585 4 :
Lok k2
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6) P (supgggéde B, < A)

P (SUPtSdO B, < A)
Pl sup B/SA| = —
s <t<dp p (suptgge B, < A)

B 1 1
T 1-—e24 A’

6H P <5ng9§t§d9 Z: < A)

Pl sup Z;<A
9 St<dp

P (suptédg Zy < A)

P (suptége Zy < A)

o
==
T 1—a%
1 1 1
T 1-a¥ Aal-qa

3 Computations of joint distributions

1) P (supuge B, > A, By € dx)

P (supBu = A, By € dx) = EPX =2 A,X—-Y e€dx|X))
us6

=FE (lsz lxzxke_ux_x)>

%ekxe—ZA max(A,x) dx

where we put X = sup,<4 By, Y = sup,<y B, — By and
X ~ Y ~ Exp()), Xand Y are independent.

2) P (suptggg B> A,By € dx)

P|supB; 2 A,Byedx|=P|supB; =2 A|P(By € dx)
t<g t<gp

_ooAr
— DAL Al g

since pre-gg events and post-gy events are independent.
(see Revuz -Yor[5], Chapter XII).

3) P (supgggtég B. < A By € dx)

We start with:

P|lsupB; SA|P| sup B;<A,By €dx
t=go 9 St <0

=P|supB; £ A,Bycdx],
t<6
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since pre-gy events and post-gy events are independent.
Then, we get:

P| sup B; < A,Byedx
g0 St=6
1

—Alx| _ Ax—2AA
Ppp—vy L<a (e e ) dx

A
)

wp@mﬁmgAmea)

P| sup B £ A,By €dx
t§d9

=P|supB; <A, sup B; S A,By €dx
t<o 0<t<dp

=P| sup B; < A||By =x,supB; < A
0<t<dp t<o

x P| By € dx,supB; £ A
t<o

=P| sup B;ZA|Bg=x|P|Byg €dx,supB;<A
0<t<dy t<6

+
= (1 — 2) lng% (ef)‘lxl - e)‘xfzm) dx

by the Markov property at 6.

@P@%§%&§AMEM>

If x <A,

P| sup B, < A,Byedx
0<t<dp

=P| sup B; < A||By =x | P(By € dx)
0<t<dy

+
=(1- r &e_klxldx.
A2

If x > A, the result is trivially 0.

@P@%gﬁﬂgA%eﬁ)

P| sup B:<A,Byedx
9 St=dy

P (suptgde B < A,By e dx)

P (suptggs B, < A)

<1_£g A

A

1o malxgay (e‘“x\ - ekx—zm) .
— e =
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In the following section, we state applications of these
exact computations to price some exotic options which we
call “Meander Options”.

4 Price of some meander options

4.1 Option price at independent exponential time

We consider the following Black Scholes Model under the
risk neutral measure Q:

dSt = I’Stdt + O'Stth, S() =S

where S; is the stock value at time ¢, r is the risk free rate,
and o is the volatility.
We get:

1
St = Sexp <(r — 202> t—i—UWt)

Then the risk neutral valuation for derivative with pay-
off Y at maturity time T gives V(Y), the present value of
derivative Y:

%:E@”@

If Y is of the form ¢ (Fr), instead of fixed time T, it
may be more convenient to work at time 6, an indepen-
dent exponential time, because using such 6 often makes
expressions simpler than at fixed time 7T

There are 2 ways to access such results.

First attitude:

a) to obtain the law of Fy;
in fact, very often for this, it is simpler to consider Fy,
0 ~ Exp(}), and to invert the Laplace transform to
get the law of F;. Then, compute E(¢ (F;)) for the
particular ¢ of interest.

b) second attitude: Start directly with

A /0 ¢ ME (§ (F) dt = E (& (Fp)

and invert the Laplace transform.

In fact, there is the commutative diagram:

Law of (Fp) — E (¢ (Fp))

Law of (F;) —> E (¢ (Fy))

which indicates that we may use either route from NW to
SE.
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First we consider the case ¢ = f(St) which is only
dependent on the final stock value St.

C—E <e—r(9f (Se(r——o2)9+a“’/9)>

r—1g2 1 7—102 2
=E |exp ; Wp — 2( j )—|—r 0] f(se”™?)

(.- Cameron-Martin)

=E <exp (_% (2 + %)20> exp (V —jaz Wg)f(SefTWe))

o
where 6’ ~Ex, A—{—l(l-}—gy A’—)\—|—l (1_{_2)2
P\ =G
o0 /
= 2T ey (se) YR b g
P 2

Generally we get that E(e *f(Wp)) = [ e
E(f(Wp))re Mdr = 5 +ajs( f(Wp)) where we used that
for 6 ~ Exp(1),then 6’ ~ Exp(A + @).

We also used the simple facts E(e“ Wf?’) :E(E(e“ Wor ||9’)) =

o2 / /957 /
E(e 2 ) = 25112 = f_°° e""‘%e’ 2Vl dx then, we

o0

get

V «/ﬁ|x|

Sw, (x) =

In the case of a call option, f(S7) = (ST —K) ™. We want
to get the call option price when K = S.

00 /937
C= * e(7 %)% (Se* — K) V2 e Y2 gy
A/ JlogK/S 2
oo /
_ v ( W—o—(L-5 )xdx
A logK/S 2
LR [T g2 (V)
A logK/S x

2 r 1 22 o 1
ra §o atigT ettt

We get the usual Black-Scholes formula by inverting the
above with respect to A.

4.2 Price of meander lookback option

Vo(Meander lookback option up to time 0)

1 +
— E( maxg(]()< <9 SeeXP((V—EUZ)M-F(TWu) _ 1() ) .
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In the following, we calculate the above in two cases:
a)S<Kandb)S = K

aQ)S<K

Elef| max S,
g St
=E(ef( max S;|,0> 1w
g St
Elef| max S;),0 <%
g S0

_ E(eirTK)E efré)f max KeaW[Jr(rf%gZ)t
g St<o

(by memoryless property)

_E(e7™)E (e—ree(;—‘;m—;((;—z)ze

K<t<p

A, r o
=E(e7™) ZE[eG=DWor [ max KeoW:
N g8 <i<or

x f ( max Ke"W‘>) (by Cameron-Martin)
&y =

— 7E —V‘L’K / / )xf (I(eO'A>
A>x>0
—A Ax—2AA
e / [ ey (ko)
A>x>0
2
A% sinh Ax dxdA (%)

X —_—
4 (sinh 1A)?
b)S>K

E(ef Jnax S

( £ <t<9

=E(e’f| max S;),0 2w |+E(ef| max S;),0 <1
g St o St=6

— E(e—rrK)E e—rﬁf max I<e(7WZ+(r—%az)t

g St=o

E e”ef max S; )|,
g St g

min Sy > 1()
i <t<o
A o ob
_(*)+;/0 dbf(Se )

P e(ﬁf%) log 5 sinh(b\/n +M2) +eG—9)b sinh—2 log £./25+ 112
“\ T sinh((bfilog %)\/2A+M2

For call option i.e. f(x) = (x — K)*, we obtain that by
some elementary calculation,
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a) when § < K, the price equals:

r o r
2. 2 2),
> 1
where {®(4,B,C) = .
RO =) T Ha BaT O
Especially, if 0> = 2r, the price equals Lﬂ
8+
@
K\ o2 »(3) (A=0 2i—0 3A—
<§> ¢ (455 5 R0)-
b) when S > K, the pri als: —
) when S = e price equ: (k%) + T3y
K (a%_%) X ob
1—(§) (S—K)+ oS [>e
fon(r_ a2\
e(ﬁ_i)log§sinhb,/2A+(§f%)2+e(§7%)hsinh 7M log%
—1|db|.

sinh((b—% log &) /214 (£ ~ %)2>

Condolences
Prof. Marc Yor passed away suddenly on January 9 2014. He brought so many
gifts to our mathematics. We will never forget him.
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