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Abstract

homomorphic encryption in marketing analysis.

We consider secret computation of purchase history data among two companies of different type of business in
order to identify purchase patterns without revealing customer information of each company. Among several
privacy-preserving approaches, we focus on homomorphic encryption, which is public-key encryption supporting
meaningful computations on encrypted data. In particular, we apply the somewhat homomorphic encryption
scheme proposed by Brakerski and Vaikuntanathan (CRYPTO 2011), which can support a limited number of both
additions and multiplications over polynomials. The main contribution is to introduce a practical packing method in
the scheme to efficiently compute the set intersection of purchase history data over packed ciphertexts. Furthermore,
we implemented the scheme for several parameters corresponding to various security levels, and demonstrate the
efficiency of our packing method. We hope that this work would give the first practical usage of somewhat
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1 Introduction
Recently, in Japan, services with a rewards card (or called
a loyalty card) commonly used among companies of dif-
ferent type of business, for example, “T-card” and “Ponta-
card”, have been paid to much attention®. As a fascination
to use such cards, there are several advantages; For tie-up
companies, they can have more opportunities to acquire
new customers, and obtain market trend data from com-
panies of different type of business. On the other hand,
for customers using such a card, they can collect rewards
points from companies of different type of business and
bring such points together on the only one card. In par-
ticular, the biggest advantage is that tie-up companies can
collect market and customers information exceeding the
frame of their own type of business, and to use the infor-
mation for so-called market basket analysis, which is one
of the marketing analyses in order to identify purchase
patterns (e.g., to identify what items tend to be purchased
together, sequentially or by seasons).

However, at the same time, some problems would be
caused in handling customers information among tie-up
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companies. For example, when purchase history data are
analyzed, it needs to share both customer ID and purchase
history data among tie-up companies. In this case, cus-
tomer information of each company would be revealed to
the other companies, and hence some problems related
to the customer’s privacy might be feared. Furthermore,
since purchase history data of each company are directly
related to its own sales, the data should be secret to the
other companies (see [23], Section 1 for discussion on
these issues).

1.1 Application scenario

Looking back on the above issues, we consider the follow-
ing scenario; “Assume that there are two tie-up companies
A and B and they only share their customers ID (e.g.,
the rewards card number can be used as a customer ID).
The two companies A and B have their own customers
purchase history data of items X and Y, respectively.
Then they would like to know the number of customers
who bought both items X and Y in order to identify
how much the items are purchased sequentially, with-
out revealing each customer purchase history data to one
another”.
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1.2 Homomorphic encryption

Among currently known privacy-preserving approaches,
we apply homomorphic encryption to the application sce-
nario of Section 1.1. At present, there are the following
three main types in homomorphic encryption, depend-
ing on operations on encrypted data which each type can
support.

Additively homomorphic encryption It can support
only additions on encrypted data. Paillier
scheme [17] and additive ElGamal scheme
[7] are typical.

Somewhat homomorphic encryption (SHE) It can
support both additions and multiplications
on encrypted data, but the number of
possible operations is limited. The first
construction of such encryption was the
BGN scheme [1] based on pairings over
elliptic curves. However, the BGN scheme
can handle a number of additions but only
depth-one multiplications. After Gentry’s
breakthrough [9,10] of constructing an FHE
scheme (see below for FHE), a number of
new SHE schemes have been proposed as a
building block of FHE, for example, ideal
lattices based schemes [9-11], integers based
schemes [6,18], and finally learning with
errors (LWE) based schemes [2-4]. Unlike
the BGN scheme, these schemes can handle
additions and multiplications of depth
greater than one.

Fully homomorphic encryption (FHE) It can support
“any operations” on encrypted data,
including the unlimited number of additions
and multiplications. In 2009, Gentry in
[9,10] proposed a new method to construct
an FHE scheme from the SHE scheme based
on ideal lattices, whose method is called
bootstrapping. Currently FHE schemes have
some problems mainly including slow
performance and the big encrypted data
size, and hence FHE is believed to need a
long way for practical usage (see [6,11] for
their implementation results of “pure” FHE
schemes, also [12] for the recent work of
implementing a “leveled” FHE scheme).

1.3 Previous work

In the scenario of Section 1.1, assume that two compa-
nies A and B have their own customer purchase history
data represented by (x1,%2,...,%4) and (y1,¥2, ..., Ym),
respectively, where x;,y; € {0, 1} denote the purchase his-
tory of items X and Y of the customer with ID-i for each
i=1,---,m (let m denote the number of customer’s ID).
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As for the item X, the value x; = 1 (resp. x; = 0) means
that the customer with ID-i bought (resp. did not buy)
the item X. Under these assumptions, the inner product
>, % - y; gives our desired result, namely, the number
of customers who bought both items X and Y (i.e., the set
intersection of purchase history data). In order to evaluate
the inner product by homomorphic encryption, we need
to apply either an SHE or FHE scheme, and SHE would be
suitable in practice. Then, using the SHE scheme based on
ideal lattices, the authors in [23] proposed a secret com-
putation model for the application scenario of Section 1.1.
In their model, the cloud is assumed to be used as an out-
sourcing computation resource, and a trusted assayer is
involved in order to identify purchase patterns of items X
and Y. The flow of their secret computation is as follows
(see also Figure 1):

1. The trusted assayer generates the public key pk and
the secret key sk of the SHE scheme, and distributes
only the public key pk to the public.

2. Using pk, each company encrypts its own purchase
history data (x1,...,%m) or (y1,...,¥m), and sends
the encrypted data (Enc(xy), .. ., Enc(xy,)) or
(Enc(y1), - . ., Enc(y;,)) with customer’s ID to the
cloud (using the bit-wise encryption). Since all data
are protected by encryption, each company’s
purchase history data cannot be revealed to one
another.

3. In the ascending order of customer’s ID, the cloud
arranges (Enc(x1), ..., Enc(xy,)) and
(Enc(y1),. . ., Enc(y,1)) as in Figure 1. Then the cloud
computes the inner product

ct= Z Enc(x;) - Enc(y;) (1)

i=1

on encrypted data (note that ct is the ciphertext of
the inner product Y ; x; - y; due to homomorphic
property), and only sends the encrypted result ct to
the assayer. Since the cloud has no the secret key, the
cloud cannot learn any information about the
purchase history data of each company.

4. Using sk, the assayer decrypts the encrypted result ct
to obtain the desired inner product Z:’;l Xi Vi,
which enables the assayer to identify purchase
patterns of items X and Y.

1.4 Our contributions

As described in Section 1.3, the authors in [23] adopted
the bit-wise encryption in the SHE scheme based on ideal
lattices to compute a secure inner product, which would
cause difficulty mainly on the encrypted data size (e.g., we
need 10,000 ciphertexts for m = 10,000 customers). Fur-
thermore, since it requires m times additions and m times
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Figure 1 The secret computation model of purchase history data between two companies proposed in [23].

multiplications on encrypted data for the secure compu-
tation (1), slow performance is also concerned. Then, the
aim of this work is to improve their work for reduction of
both the performance and the encrypted data size. In the
following, we summarize our contributions:

e Unlike [23], we apply the SHE scheme proposed by
Brakerski and Vaikuntanathan [4], which is based on
a simplified version of the ring-LWE assumption of
[14].

e We propose a method in the SHE scheme to pack a
vector of certain length into a single ciphertext, which
enables to efficiently compute a secure inner product.
By this method, we can reduce both the encrypted
data size and the performance considerably. Hence
the SHE scheme with our packing method could be
practically used in various applications.

e To demonstrate the efficiency, we implemented the
SHE scheme with our packing method. While the
work [22] only implemented the scheme of lattice
dimension 20438, this work gives more detailed
implementation results for several lattice dimensions
2048, 4096, 8192 and 16384. Furthermore, our
implementation is optimized by using inline assembly
language in C programs, and hence it gives faster
performance than the previous implementation
results of [16] in the same scheme.

Remark 1. Our method specializes in the structure of
the special ring Z[x] /(" + 1), which is used in the
construction of the SHE scheme of [4] (see Section 2
below for the construction). Therefore, our packing
method can be applied in the scheme based on ideal lat-
tices, and the BGV scheme [2] (the performance and the

encrypted data size in these schemes are estimated to be
almost the same as in this work). On the other hand, our
packing method cannot be applied in the BGN scheme [1]
since the scheme is based on pairings over elliptic curves.
More specifically, our method needs to use certain poly-
nomial transformations in Z[x] /(x" + 1), but the BGN
scheme cannot support such polynomial transformations.
Then we only can use the bit-wise encryption in the
BGN scheme for a secure inner product as in Section 1.3.
Furthermore, as discussed in [16], the homomorphic mul-
tiplication of the BGN scheme is slower than that of the
SHE scheme of [4] under almost the same security level
(such as 128-bit), and hence the SHE scheme with our
packing method is estimated to give much faster perfor-
mance than the BGN scheme with the bit-wise encryption
for a secure inner product.

Basic notation The symbols Z, Q, and R denote the ring
of integers, the field of rational numbers, and the field
of real numbers, respectively. For a prime number p, the
finite field with p elements is denoted by [F,,. For two inte-
gers z and d, let [z]; denote the reduction of z modulo
d included in the interval [—d/2,d/2) (the reduction of
z modulo d included in the interval [0,d) is denoted by
z mogl d as usual). For a vector A = (ay,ao,...,a,) € R”,
let ||Alloo denote the co-norm defined by max; |a;|. Let
(A,B) denote the inner product of two vectors A and
B. Finally, we let 1g(g) denote the logarithm value of an
integer g with base 2.

2 Somewhat homomorphic encryption

In this section, we briefly review the construction and
the correctness of the SHE scheme proposed by Brakerski
and Vaikuntanathan [4]. The security of the scheme relies
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on the polynomial LWE assumption defined below, which
can be regarded as a simplified version of the ring-LWE
assumption of Lyubashevsky, Peikert and Regev [14] (see
[4], Section 2 for details of the assumption).

Definition 1 (Polynomial LWE assumption). For a
security parameter A, let f(x) = %" + 1 be the cyclo-
tomic polynomial for an integer n = n()) of 2-power.
Let ¢ = g(1) be an integer and set R = Z[x] /(f(x)) and
R; = R/qR. Let x = x(X) be a distribution over R. Then
the polynomial LWE assumption PLWE, 4, is that it is
infeasible to distinguish the following two distributions:

1. One samples (a, b) uniformly from (Rq)z.

2. Onedraws s < x uniformly and samples (a, b) by
sampling a <— R, uniformly, e <— x and setting
b=as+e.

2.1 Construction of the SHE scheme
The following four parameters are needed for the scheme
construction:

® 1:an integer of 2-power, which defines the base ring
R = Zl[x] /(f (x)) with the cyclotomic polynomial
f(x) = «" 4+ 1 of degree n as in Definition 1. This
degree n is often called the lattice dimension.

® g:aprime number with ¢ = 1 mod 2#, which defines
the base ring R; = Fy[x] /(f (%)) of ciphertext space.
The condition ¢ = 1 mod 2# is not necessary for the
scheme construction, but it is required to discuss the
provable security [4], Theorem 1.

e t:aninteger with ¢ < g to determine a plaintext space
R; = (Z/tZ)[ %] /(f (%)) (¢ is not necessarily prime).

® o: the parameter to define a discrete Gaussian error
distribution ¥ = Dyzx , with the standard deviation
o, namely, we select each entry in an #-dimensional
vector by sampling from a Gaussian distribution
N(0,0), and then round it to the nearest integer. In
practice, we choose relatively small value such as
o=4~8

Key generation We first choose an element R 5 s <
and sample a uniformly random element 4; € R; and
an error R > e < x. Then set pk = (ag,a;) with
ao = —(a1s + te) as the public key and sk = s as the secret
key.

Encryption For a plaintext m € R; and the public key
pk = (a0, a1), the encryption samples R > u,f,g < x and
computes the “fresh ciphertext” given by
Enc(m, pk) = (co, c1) € (Rp)”
= (aou + tg + m, a1u + tf), (2)
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where m € R; is considered as an element of R; in the
natural way due to the condition ¢ < g.

Homomorphic operations While the above encryption
algorithm generates ciphertexts with only two ring ele-
ments, the homomorphic multiplication defined below
makes the ciphertext length longer. Therefore we need
to define homomorphic operations for ciphertexts of any
length as follows: Let ct’ = (cy, ... ,c’g) € (Rq)SH, ct’ =
(cg,...,c’,]’) € (Rq)"Jrl be two ciphertexts. The homo-
morphic addition “+” is computed by component-wise
addition of ciphertexts, namely, we have

/g /! / /! / /!
et +ct” = (c)+ ¢ Cmaxie,n) T Cmax(e, )

by padding with zero if necessary. Similarly, the homo-
morphic subtraction is computed by component-wise
subtraction. On the other hand, the homomorphic multi-

plication “x” is computed by
ct' xct” = (Co, ..., Cetn)

where we consider ciphertexts ct’,ct” as elements of
R,[z] by an embedding map (R;)" > (vo,...,v,—1) >
;;é viz' € Rylz] for any r > 1, and compute

§ n
> |- (Z cg’z") € Rylz].
i=0 i=0

E+n

E éiz’ =
i=0

Decryption For any (fresh or non-fresh) ciphertext ct’ =
(Chs---» cé) € (Rq)E +1 the decryption with the secret key
sk = s is computed by

Dec(ct, sk) = [/1], mod¢ € Ry,

where 71 = Z?:o c;-si € Ry. For the vector s = (1,s, $3..0)
(called the secret key vector), we can also rewrite

Dec(ct’, sk) =[(ct’,5)]; modzt.
Let ct = (cp, c1) be a fresh ciphertext given by (2). Since
ag + a1s = —te, we have
(ct,3) = (aou + tg + m) +s - (a1u + tf)
=m+t-(g+sf— ue)
in the ring R;. If the value m+-t- (g +sf —ue) does not wrap

around mod ¢ (i.e., all errors R > e,f,g,u < x must be
sufficiently small), we have

(ctSH]g=m+t-(g+sf — ue)

in the ring “R” (see also Lemma 2 below for the condi-
tion of successful decryption). In this case, we can recover
the correct plaintext m by mod ¢-operation, which shows
the decryption mechanism for fresh ciphertexts. Further-
more, for two fresh ciphertexts ctj, ctp, we clearly have

(cty F cty,5) = (cty, ) + (cty, 5)
(cty * cty, 5) = (cty,s) - (cta,s)
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in the ring R;. These two equations help us to understand
the construction and the correctness of homomorphic
operations in the encryption scheme, but please refer ([4],
Section 1.1) for details. Here we also give a lemma on the
“cryptographic security” of the scheme constructed above
(see [4] for details).

Lemma 1 (security). Given (n,q,t,0), the scheme is
provably secure in the sense of IND-CPA under the poly-
nomial LWE assumption PLWE, ;. with x = Dz, (see
Definition 1 for the definition of PLWE,, ).

2.2 Correctness of the SHE scheme

By correctness, we mean that the decryption can recover
the operated result over plaintexts after some homo-
morphic operations over ciphertexts. For the scheme
constructed above, the homomorphic operations over
ciphertexts correspond to the ring structure of the plain-
text space Ry, namely, we have

e (Addition) Dec(ct + ct/,sk) = m + m’ € R;, and

e (Multiplication) Dec(ct * ct’,sk) = m x m’' € R,

for ciphertexts ct, ct’ corresponding to plaintexts m, n?,
respectively. However, the scheme merely gives an SHE
scheme (not FHE), and its correctness holds under the
following condition (see the proof of [16], Lemma 3.3):

Lemma 2 (Condition for successful decryption). For a
ciphertext ct, the decryption Dec(ct, sk) recovers the cor-
rect result if (ct,5) € R, does not wrap around mod g,
namely, if the condition

14et,5) oo < g 3)

is satisfied, where for a = Y ax' € R, let ||allo =
max |a;| denote the oo-norm of its coefficient representa-
tion.

3 Practical packing method
For reduction of both the encrypted data size and the
performance, Lauter, Naehrig and Vaikuntanathan [16]
introduce some message encoding techniques in the SHE
scheme of [4]. Their main technique is to encode inte-
gers in a single ciphertext so that it enables to efficiently
compute their sums and products over the integers. Their
method first breaks an integer M of at most # bits into a
binary vector (Mo, . . ., M,_1), creates a polynomial given
by
n—1
pm(M) == Y~ M, (4)
i=0
and finally encrypts M as

Ctpack (M) := Enc (pm(M), pk) , (5)
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where pm(M) is regarded as an element of R; for suffi-
ciently large ¢. Note that we clearly have pm(M)|,_, = M
for any integer M of n bits, where a(x)|,_, denotes the
value substituted x = 2 for a polynomial a(x) (i.e., the
value a(2)). For two integers M, M’ of n bits, the homo-
morphic addition of ctpack (M) and ctpack(M') gives the
polynomial addition pm(M) + pm(M’) on encrypted data
by the correctness of the encryption scheme, and it also
gives the integer addition M + M’ since

pmM) + pmWM')| _, =M+ M.

However, the integer multiplication M - M’ causes a prob-
lem since the polynomial multiplication pm(M) - pm(M’)
has larger degree than # in general. Their solution to
address the problem is to encode integers of at most
n/d bits if we need to perform d homomorphic multi-
plications. Then their method is acceptable in computing
multiplications of low depth, such as the standard devia-
tion which can be calculated by depth-one multiplications
(in fact, the authors in [16] apply their packing method
to compute simple statics such as the mean, the standard
deviation, and the logistical regression on encrypted data).

3.1 Our packing method

In contrast to the packing method of [16], we present a
new one. Our method is based on [16], and it can be con-
sidered as an extension of the method of [16]. Specifically,
we give “two types of packed ciphertexts” in order to make
use of the ring structure of the plaintext space R; for a
secure inner product over packed ciphertexts. Now let us
define our packing method.

Definition 2. For a vector A = (Ao, ...,Au—1) oflength
n, we define two types of packed ciphertexts as follows:

1. Asin the equation (4), set

n—1
pmy(A) = > Aw'.
i=0
For sufficiently large ¢, we consider the above

polynomial to be an element of R;. As well as (5), we
then define

ct[(jla)ck(ﬁ) := Enc (pml(ﬁ), pk)

as the packed ciphertext of the first type. This type is
the same as given in [16].
2. Unlike the first type, set

n—1

pmy(A) = — ) A",
i=0
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As the second type, we define

ctl()i)ck(ﬁ) = Enc (pmz(ﬁ), pk) .
This type is always needed for efficient computation
of secure inner product (see Theorem 1 below).

Our packing method can pack a vector of length # into
a single ciphertext irrespective of types. Hence, compared
to coefficient-wise encryption, our method can reduce the
encrypted data size considerably.

3.2 Secure inner product computation
Due to two types of our packing method, we have the
following result on secure inner product computation:

Theorem 1 (Secure inner product computation). For
two vectors A, B of length n, let ct denote the ciphertext
given by the homomorphic multiplication

) (@A)« ct? B 6)

pack pack

of two types of packed ciphertexts. Let mq denote the con-
stant term of the decryption result Dec(ct,sk) € R;. Then
we have

moy = (A,E) mod .

In other words, the constant term of the decryption result
gives the inner product of two vectors A and B for suffi-
ciently large t.

Proof. Since the homomorphic operations over cipher-
texts correspond to the ring structure of the plaintext
space Ry (see Section 2.2), the decryption result Dec(ct, sk)
is equal to the polynomial multiplication pml(gl) X

pm,(B) in R, Set A = (Ag,...,A,_1) and B =
(Bo,...,By—1). Then

n—1 n—1
pm; (A) x pmy(B) = (ZAixi) < [ =Y B

i=0 j=0

n—1

= — ZAiBix” + (the other terms)
i=0

= <;L 1§> + (non-constant terms)

in R; since x” = —1. This completes the proof. O

The result of Theorem 1 tells that our packing method
enables to compute the inner product of two vectors of
length 7 by “only one homomorphic multiplication” over
packed ciphertexts (cf. it needs #» homomorphic additions
and # homomorphic multiplications in the component-
wise encryption to obtain the same inner product).
Actually, in Definition 2, we take two types of our pack-
ing method so that Theorem 1 holds. Specifically, the
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key point in the above proof is multiplication between
two types of our transformed polynomials pml(A) and
me(E) in the ring R;. Our basic idea is derived from
the convolution of polynomials, which we encounter in
various mathematical fields. More specifically, given two
polynomials

a(x) =ag+arx + -+ a, 12",
b(x) =by+bix+ -+ b, 15" L.

The product of a(x) and b(x) is called the convolution.

Furthermore, for any 0 < & < n — 1, the ”-coefficient
h

of the convolution is the sum Z a;by_; of products a;, b;
i=0
for which i 4+ j = h. In particular, in the case h = n — 1,
the above sum is similar to our desired inner product
;:01 a;b;, and the difference is only the index of b’s.
Then our trick for the inner product is to “re-arrange
the coefficients of b(x) by converse order” (see the sec-
ond polynomial transformation in Definition 2, in which it
needs the minus sign in addition due to we have x” = —1
in the special ring Z[ x] /(x" + 1)).

Remark 2 (Privacy enhance technique). While our
packing method can give efficient performance for a
secure inner product, it gives a decryptor (i.e., the assayer
in Figure 1) more information than his desired result and
hence it may cause a new privacy issue that the decryp-
tor may know extra information about purchase history
data of customers. In fact, the computation (6) gives the
inner product in the constant term, but it also includes
extra information in the other terms (then the decryptor
can know the extra information by decryption). The sim-
plest method to conceal the extra information against the
decryptor is to add random data in a ciphertext. Specif-
ically, for a ciphertext ct = (co,c1,¢2) € (Rq)3 given by
the computation (6) (note that ct has three components
generated by one homomorphic multiplication), we first
generate a random polynomial

rx) =rx+-+r_1x"eR
and then compute a ciphertext given by
ct’ = (¢co + (%), c1,¢2).

Then the decryption of the ciphertext ct’ includes our
desired inner product in the constant term, but the other
terms are masked by random information r;’s (then the
decryptor can not know extra information).

Remark 3 (Other applications). As well as the secure
inner product computation (6), linear combinations
of two types of packed ciphertexts can give several
meaningful computations such as (see also our related
work [21])
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® private statistic (e.g., sum and standard deviation),
e statistical analysis (e.g., covariance), and
e distances (e.g., the Hamming distance).

Especially, secure Hamming distance can be applied
in privacy-preserving biometrics to measure the similar-
ity of two biometric feature vectors on encrypted data.
Please see our previous works [19,21] for secure Hamming
distance in SHE schemes (note that the work [19] uses
the SHE scheme based on ideal lattices of [11]). Further-
more, our method can be applied to efficient computation
of multiple Hamming distance values for secure pattern
matching (see [20]).

4 Parameters setting of the scheme

Here we discuss how to choose parameters (#,q,t,0) of
the SHE scheme suitable (maybe not optimal) for the
secure inner product (6) over packed ciphertexts, and
we give several parameters of more than 80-bit security
level. For simplicity, we only consider secure inner prod-
uct between two binary vectors A, B of length 7. In this
case, we can pack each of A and B into a single cipher-
text with our packing method (see the below diagram).
In the application scenario of Section 1.1, we assume that
the number m of customer’s ID is smaller than the lat-
tice dimension # (see our previous work [22] for the case
m > n), and two binary vectors Aand B represent pur-
chase history data of items X and Y, respectively (note that
it is different from the representation of purchase history
data in Figure 1).

- packedenc. () -
A—— C1:pack(A)\A

ctgiven by (6) — (A,E)
@ B
Ctooei (B) 4

o018

packed enc.

4.1 Correctness and security
For the correctness, by Lemma 2, we need to satisfy the
condition (3) for the ciphertext ct. Furthermore, it follows
from the proof of ([16], Lemma 3.3) that we have
. 1) 3. - 2) 7 o

(ct,5) = <ctéa)ck(A),s> . <CtE,a)Ck(B),S>
in the ring R;. When we set U to be an upper bound of
the co-norm size ||{ct’,s)||oo for any fresh ciphertext ct’,
the above equation gives an inequality || (ct,s) ||oo < nl?>

D 7 = 2) Py =

by IHCt orsc(A), )] ooy 11{C ey (B), $)lloo < U and the well-
known fact

lla+bllco < llalloot1bllcos lla-bllooc < 1-|lalloo-|1b]loo

for any two elements a,b € Ry. As in [16], we take U
to be the value 2to2,/n, which is an experimental esti-
mation. Then we have ||(ct,5)||oc < nU? < 4n*t’c* by
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the above inequality. Therefore, by the inequality (3), we
estimate that the correctness for the ciphertext ct is
satisfied if

8n’t’ct < ¢, (7)

which condition gives a lower bound of g for the correct-
ness.

By Lemma 1, the security of the scheme relies on the
polynomial LWE assumption PLWE, 4, in Definition 1.
The security analysis in [16] is based on the methodology
of Lindner and Peikert [13] for the standard LWE prob-
lem. However, we still use their security analysis as in [16].
According to [13], there are two efficient attacks against
the general LWE problem (e.g., see [13] for details of the
two attacks);

¢ the distinguishing attack of [15], and
¢ the decoding attack proposed by [13].

The analysis of [13] shows that the decoding attack is
always better than the distinguishing one, but the two
attacks seem to have a similar performance for practical
advantages such as ¢ = 2732 and 27 (the advantage ¢
of attackers means the success probability to distinguish
the two distributions given in Definition 1). Therefore
we only need to consider the security against the distin-
guishing attack as in [16]. The security of lattice-based
cryptographic schemes can be measured by the root Her-
mite factor. According to the analysis of [13], for given
parameters (#, g, t, o), we have a relation between #, g and
8 given by

¢-qlo = 22VmE@180) 8)

where ¢ is the constant determined by the attack advan-
tage ¢ (c ~ /lg(1/¢)/(1g2 - ) by [13]), and we here take
¢ = 3.758 corresponding to ¢ = 27% (only two values
2732, 2764 are considered for ¢ in [16], and we take just
one of the two values in this paper).

4.2 Chosen parameters and security levels

As in [16], set 0 = 8 as the standard deviation param-
eter of the distribution ¥ = Dz», to make the SHE
scheme secure against combinatorial style attacks (see
also [8]). We also set ¢ = n as the modulus parameter
of the plaintext space, which is sufficient for computing
the inner product between two binary vectors A and B
of length n. To obtain various security levels, we take
four lattice dimension parameters n = 2048, 4096, 8192
and 16384 (as the lattice dimension is larger, the secu-
rity becomes higher). Then for each lattice parameter n,
the parameter g is determined by the condition (7), and
then the root Hermite factor § is computed by the rela-
tion (8). In Table 1, we show our chosen parameters of the
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Table 1 Chosen parameters (n, g, t, o) of the SHE scheme
for the secure inner product (6) over packed ciphertexts

(6 denotes the corresponding root Hermite factor, and taqy
the estimated running time of the distinguishing attack
given by equation (9))

n q t o ) tadv
(i) 2048 61-bit n 8 1.00499 140-bit
(i) 4096 65-bit n 8 1.00266 400-bit
(iif) 8192 69-bit n 8 1.00141 775-bit
(iv) 16384 73-bit n 8 1.00075 1554-bit

SHE scheme for the secure inner product (6) over packed
ciphertexts.

According to the state-of-the-art security analysis of
Chen and Nguyen [5] for lattice-based cryptographic
schemes, a root Hermite factor smaller than § = 1.0050 is
estimated to have more than 80-bit security level with an
enough margin. Therefore the four parameters in Table 1
are estimated to have 80-bit security level against the dis-
tinguishing attack with advantage ¢ = 27%, and also
against the more powerful decoding attack (note that
as mentioned in Section 4.1 the two attacks has simi-
lar performance for ¢ = 27%%). In particular, note that
the parameter (i) in Table 1 is similar as the parame-
ter (n,q,t,0) = (2048, 58-bit, 1024, 8) with § = 1.0046
included in [16], Table 1, which is estimated to have more
than 120-bit security level according to the security anal-
ysis of [13]. On the other hand, the authors in [13] simply
estimate the running times for the NTL implementation
of the BKZ algorithm, which is one of the most practical
lattice reduction algorithms. They also derive a relation
of the expected running time fpgy of the distinguishing
attack with the root Hermite factor § by

1)

For chosen parameters (i)-(iv) in Table 1, we give the
expected running time £pgy computed by the relation (9)
also in Table 1. However, their security analysis seems no
longer state-of-the-art due to the old NTL implementa-
tion. Therefore we remark that the £pqy-data in Table 1 are
just at the reference level, but the data tell a rough stan-
dard of the security level of each parameter. For example,
the parameter (iv) in Table 1 is estimated to have much
more than 1000-bit security level against the distinguish-
ing attack with advantage ¢ = 274,

1g(tAdv) = (9)

5 Implementation results

For the four parameters (i)-(iv), we implemented the SHE
scheme with our packing method for the secure inner
product computation (6). Our experiments ran on an Intel
Xeon X3480 at 3.07 GHz with 16 GB memory, and we
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used our own software library using inline assembly lan-
guage x86_64 in C programs for all computations in the
base ring R; = Fy[x] /(x” + 1) of ciphertext space. Our
C code was complied using gcc 4.6.0 on Linux. In order
to obtain efficient multiplication in R, we implemented
the Montgomery reduction algorithm for all parameters,
and the Karatsuba multiplication algorithm for only the
parameter (i), and the multiplication algorithm using the
FFT (Fast Fourier Transform) method for (ii)-(iv). Actu-
ally, our experiments show that the Karatsuba method is
about twice faster than the FFT method for the parame-
ter (i). On the other hand, the FFT method is faster than
the Karatsuba method for the parameters (ii)-(iv) (e.g., it
is about 5 times faster for the largest parameter (iv)).

In Table 2, we summarize the performances and the
sizes of the SHE scheme with our packing method. As
described in Section 3.1, our packing method can pack
a binary vector of length less than # in a single cipher-
text, and the computation (6) enables to compute the
inner product between two binary vectors of length »
over packed ciphertexts. In the following, we describe
details for only the parameter (i) (cf. implementation
results of ([16], Section 5) by the computer algebra system
MAGMA):

Sizes The size of pk = (ag,a1) € Ré is 2n - 1g(q) ~ 31.2
KB, and the size of sk = s € R, is n - Ig(q) ~ 15.6
KB. A fresh ciphertext has two elements in the
ring R,, and hence its size is 2# - 1g(q) ~ 31.2 KB.

Therefore the size of packed ciphertexts ctéla) (A)

ck
and ct;za)ck(é) is about 31.2 KB, respectively. In
contrast, the non-fresh ciphertext ct given by (6)
has three ring elements, and its size is about 46.8
KB. Note that the size of a non-fresh ciphertext
depends on the number of its ring elements,
whose number can be increased by homomorphic
multiplications. However, in this paper, we only
consider up to three elements for the
computation (6), which can be calculated by only
one homomorphic multiplication.

Table 2 The performances and the sizes of the SHE scheme
with our packing method for the secure inner product
computation (6) (parameters of the SHE scheme are given
in Table 1)

Parameters Packed Secure inner Decryption
encryption product

(i) 3.65ms (31.2KB) 5.31 ms (46.8 KB) 347 ms

(i) 23.03 ms (66.6 KB) 34.34 ms (99.8 KB) 2217 ms

(ifi) 4807 ms (141.3KB)  71.25ms (2120KB)  46.35ms

(iv) 107.25ms (299.0KB)  159.45 ms (448.5KB)  103.94 ms
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Performances The key generation (excluding the
prime generation) ran in about 1.89 milliseconds
(ms), the packed encryption of a binary vector of
length less than n = 2048 took about 3.65 ms, the
secure inner product computation (6) took about
5.31 ms, and finally the decryption took about
3.47 ms.

6 Conclusions

We proposed a new packing method in the SHE scheme
based on the polynomial LWE assumption for effi-
cient computation of the inner product over packed
ciphertexts, which can be used for the set intersection
computation in marketing analysis. According to our
implementation, our method enables to compute a secure
inner product between two binary vectors of length n =
2048 (resp. 4096, 8192, and 16384) in 5.31 ms (resp. 34.34,
71.25, and 159.45 ms). Furthermore, by dividing vectors
into blocks of length #, we can pack vectors of length m
into [m/n] ciphertexts and compute the inner product
over packed ciphertexts. In the case of n = 2048 and m =
10, 000, we need [m/n] = 5 packed ciphertexts and it also
takes about 5 x 5.31 = 26.55 ms for a secure inner prod-
uct between two binary vectors of length m1 = 10, 000.
These performances are practical in real life, and hence
we hope that the SHE scheme with our packing method
would be used in various applications mainly including
marketing analysis. However, our packing method can
be used between only two parties, and hence our future
work is to develop a new method which can be applied to
the set intersection computation among more than three
parties.

Endnote
2This is a full version paper of the work [22] presented
at the Forum on Information Technology (FIT2013).
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