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activities to weak earthquakes
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Abstract

In the literature, it has been hypothesized that the solar wind released by the Sun affects the Earth as a trigger to
cause earthquakes. This hypothesis is on the basis of the observation that the frequency of earthquakes rises at the
period of solar minimum. In recent years, various physical measurements on the solar wind like velocity and
temperature etc. became available. With these data, we focus on investigating the relation between the solar activities
and the earthquakes. For this purpose, we constructed generalized auto-regressive models with exogenous variables
obeying a Poisson or a negative binomial distribution, in which the response variable is the frequency of earthquakes
with Richter magnitude scales 4-4.9 (EQ4-4.9), and the explanatory variables are nine physical measurements about
the solar wind, the magnetospheres of the interplanetary magnetic field and the Earth. Model selection was
conducted by using Bayesian information criterion based forward stepwise selection. Finally, numerical results
showed that the exogenous variables of solar wind are statistically significant for the frequency of EQ4-4.9.
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1 Introduction
Solar wind is a flow of magnetized plasma released from
the upper atmosphere of the Sun. If the incoming solar
wind conditions are stationary, the Earth’s magnetosphere
is in a quiescent state. When the coronal mass flares occur
on the Sun, the quantity of plasma increases and solar
wind shocks are generated. When the shocks are trans-
mitted to the Earth, they trigger the disturbance in the
magnetosphere which is known as geomagnetic storms.
By this way, the Sun sends energy disturbance to the Earth
and affects the magnetosphere. Besides the geomagnetic
storms, some researchers hypothesized that some earth-
quakes could be also triggered by the solar wind. This
hypothesis is according to the observations that the fre-
quency of earthquake rises at the period of solar minimum
[5,6,9]. This research investigates the relation between the
earthquakes and the solar wind activities by constructing
statistical models.
Because the Earth is a dynamical system with com-

plex stochastic properties, statistical approaches, includ-
ing point process [7,10] and spectral analysis [4], are often
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employed to analyze the earthquakes. However, these
approaches mainly focused on the data of the earthquakes
themselves and few exogenous factors were considered.
Different from those approaches, we couple the Sun and
the Earth as a dynamical system, in which the variables
about the solar activities, the magnetospheres of the inter-
planetary magnetic field (IMF) and the Earth are the
exogenous variables, and the frequency of the earthquakes
is the response variable. With such an assumption, auto-
regressive models with exogenous variables (ARX) may
fit well to the data. Note that the noise terms of ARX
models are always assumed to follow an independent nor-
mal distribution with a common variance. However, such
models will not work well for modeling the frequency of
Earthquakes. This is because that the Sun-Earth coupling
system is of non-stationary statistical attributes, and the
frequency is of discrete type.
To tackle this problem, we introduce a generalized auto-

regressive model with exogenous variables (GARX) by
combining the generalized additive model with location,
scale and shape (GAMLSS) [1] with ARX models. GARX
relates the explanatory variables constructed by the past
observations to location and scale parameters. For this
reason, GARX is relaxed from the normally distributed
assumption. Therefore, GARX is more flexible than ARX.
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Because the response variable, i.e. frequency, is of discrete
type, the Poisson distribution and negative binomial dis-
tribution based GARXs are investigated. Bayesian infor-
mation criterion (BIC) [11] is applied to select proper
model structures.
The rest of the paper is organized as flows: Section ‘Data

description’ describes daily data about the earthquakes,
the solar activities and the magnetospheres for seven
years. Section ‘GARX models for earthquakes’ intro-
duces GARX and its model selection. In Section ‘Analysis
results’, the data are analyzed by GARX, and it is shown
that the solar wind statistically affects earthquakes with
Richter magnitude scales 4-4.9 (EQ4-4.9). Finally, conclu-
sions are stated in Section ‘Conclusions’.

2 Data description
In this section, the time series data about the earthquakes,
the solar activities, and the magnetospheres (01/01/2006–
12/31/2012) are introduced.

2.1 Daily frequencies of earthquakes
The daily earthquake data are downloadable from the
ANNS database of northern California earthquake data
center [2], which provides accurate and timely data.
Table 1 illustrates the frequency of the earthquakes whose
Richter magnitude scales are larger than 3 (M ≥ 3). Note
that the earthquakes withM ≥ 8 rarely occurred, we com-
bined the earthquakes with M ≥ 8 into one column, i.e.
EQ8-9.9.
Figure 1 plots the time series of the earthquakes

by the magnitude scales. The data contain the earth-
quake M = 7.2 (04/05/2010) occurred in Estado de
Baja California of Mexico, and the Touhoku earthquake
M = 9.0 (03/11/2011) occurred in north-east of Japan.
Because large earthquakes always cause aftershocks, the

Table 1 Frequency of earthquakes (n = 2,557)

EQ3-3.9 EQ4-4.9 EQ5-5.9 EQ6-6.9 EQ7-7.9 EQ8-9.9

2006/1/1 28 24 4 0 0 0

2006/1/2 22 53 5 0 2 0

2006/1/3 30 33 8 0 0 0

2006/1/4 25 35 2 1 0 0

2006/1/5 26 24 4 0 0 0
...

...
...

...
...

...
...

2012/12/27 6 11 4 0 0 0

2012/12/28 3 14 4 0 0 0

2012/12/29 2 17 6 1 0 0

2012/12/30 7 5 5 0 0 0

2012/12/31 6 11 3 0 0 0

Sum 60,474 76,770 12,023 1,052 89 11

frequency of the earthquakes itself is also taken as the
exogenous variables by GARX.

2.2 Daily solar activities andmagnetospheres
As illustrated by Table 2, nine exogenous variables about
the solar activities and the magnetospheres were used
in this research. The daily data of these variables are
downloadable from the OMNIWeb database supported
by NASA [8], which provides magnetic field, plasma, and
energetic particle data relevant to the heliospheric. Table 3
and Figure 2 illustrate the measurements and the time
series plot of the nine variables, respectively.
To model the earthquakes, the frequency of the earth-

quakes EQ4-4.9 is taken as the response variable. Then,
two types of GARX models are constructed: first one
takes only the frequencies of the earthquakes other than
EQ4-4.9 as the exogenous variables; second one includes
additional variables about the solar activities and the mag-
netospheres. In such a way, we try to investigate the
relation between the earthquakes and the solar activities
by comparing these models. In what following, GARX for
the earthquakes will be introduced.

3 GARXmodels for earthquakes
3.1 GARXmodels
Let yt and

{
u(1)
t ,u(2)

t , . . . ,u(p)
t

}
denote the response vari-

able and p−dimensional exogenous variables at time t ≤
n, respectively. Moreover, assume that the response vari-
able yt follows a probability density function f (yt| μt , σt)
specified by {μt , σt}. Here, μt and σt are location and
scale parameters respectively. Then a GARX model is
formulated as follows:

g1(μt) = β10 + βT
1 x1t (1)

g2(σt) = β20 + βT
2 x2t . (2)

Here, xit is the explanatory variable vector given by
(
yt−1, . . . , yt−liy ,u

(1)
t−1, . . . ,u

(1)
t−li1 , . . . ,u

(p)
t−1, . . . ,u

(p)
t−lin

)T

with liy, li1, . . . , lip being the maximum time lags of each
variable, where gi is a link function, and βi is a coefficient
vector for i = 1, 2.
If the conditional distributions of yt given x1t and x2t are

independent normal with μt = β10 +βT
1 x1t and log(σt) =

β20, the model is the ordinary Gaussian ARX. Therefore,
GARX captures the dynamical features not only for the
location but the scale parameter of a probability distri-
bution. Here we note that GARX is not limited to the
normal distribution assumption anymore. It can handle
the non-stationary attributes of the time series.
Let l = max{l1y, l11, . . . , l1p, l2y, l21, . . . , l2p} be the maxi-

mum time lag, Bt the set constructed by the observations
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Figure 1 Time series of frequency of earthquakes (01/01/2006–12/31/2012).

of the response and the exogenous variables up to time t,
f (y0, . . . , yl−1) the initial distribution which is not spec-
ified here, and � = {β10,β1,β20,β2} the set of model
parameters. Then, the likelihood can be expressed by the
following

L(�) = f (y0, y1, . . . , yn| Bn−1,�)

= f (y0, y1, . . . , yl−1)
n∏
t=l

f (yt| Bt−1,�). (3)

Table 2 Exogenous variables and abbreviations

B IMF Magnitude (nT)

T Proton Temperature (K)

D Proton Density (n/cc)

V Solar Wind Speed (km/s)

P Dynamic Pressure (nPa)

Ey Earth Electric Field (mV/m)

SSN Sun Spot Number (n)

DST Disturbance Storm Time index (nT)

PCI Polar Cap Index

Consequently, the parameter set � can be estimated
by using the maximum likelihood method, i.e. �̂ =
argmax L(�).

3.2 GARX based on Poisson and negative binomial
distributions

Note that the frequency of the earthquakes takes non-
negative integers. For this reason, we first assume that yt
obeys a Poisson (PO) regression model whose mean μt
is specified by the vector x1t . PO distribution is speci-
fied by the mean parameter only, and the mean of the PO
regression is expressed by

log(μt) = β10 + βT
1 x1t . (4)

This should be called an auto PO regression model.
Figure 1 shows daily EQ frequencies from Jan. 1, 2006

to Dec. 31, 2012. It is seen that several irregular peaks are
detected for EQ4-4.9 caused by giant earthquakes. Actu-
ally, the sample variance 409.05 of EQ4-4.9 is much larger
than the sample mean 30.36.
In general, the variance of PO distribution is exactly

same as its mean, whereas the variance of the negative
binomial (NB) distribution is always greater than its mean.
Therefore, we expect that NB model is superior to PO
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Table 3 Measurements of solar activities andmagnetospheres

Date B T D V P Ey SSN DST PCI

2006/01/01 10.6 69616 9.3 465 4.38 -2.7 25 3 0.5

2006/01/02 5.7 93551 5.8 442 2.28 -1.11 24 0 0.3

2006/01/03 4.2 42310 2.6 423 0.93 -0.32 19 -3 0.5

2006/01/04 4.6 43776 2.9 380 0.81 -0.4 17 -2 0.3

2006/01/05 5.1 36086 5.5 339 1.27 0.08 15 2 0.7
...

...
...

...
...

...
...

...
...

...

2012/12/27 3.3 18453 8 292 1.36 -0.07 39 -1 0.2

2012/12/28 4.6 20183 13.5 288 2.24 0.16 38 6 0.4

2012/12/29 5.2 39178 6.4 296 1.1 0.06 40 -4 0.5

2012/12/30 8.1 91979 7.8 372 1.99 -0.08 40 1 0.5

2012/12/31 3.3 59632 2 410 0.65 -0.01 64 -5 0.2

Average 4.7 86224 6.1 417.2 1.71 -0.03 22.7 -7.5 1.5
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Figure 2 Time series of solar activities andmagnetospheres (01/01/2006–12/31/2012).
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regression for EQ4-4.9. Hence, yt is fitted also by the NB
distribution with mean μt and sigma parameter σt . The
corresponding GARX model can be written as follows:

log(μt) = β10 + βT
1 x1t (5)

log(σt) = β20 + βT
2 x2t . (6)

For an application of PO regressions, readers are
referred to [3].

3.3 Model selection and evaluation
For the auto PO regressions and the NB distribution based
GARX models, the appropriate variables as well as time
lags comprised in x1t and x2t should be selected. In this
research, BIC is used for model selection. Furthermore,
because the GARX models for the frequency of the earth-
quakes have 14 exogenous variables, it is difficult to find
out the optimal model structures according to the exhaus-
tive search. Thus, we take the forward stepwise selection
method based on BIC. For the NB distribution based
GARX models, first, the forward stepwise method is used
to select proper time lags for the mean in Eq. (5). Second,
by fixing themean structure, the forward stepwisemethod
is again applied to determine the time lags for the sigma
parameter in Eq. (6).
To measure the fitting performance of statistical mod-

els, the coefficient of determination:

R2 = 1 −
∑
t
(yt − ŷt)2

∑
t
(yt − ȳ)2

(7)

is applied. Here, ŷt is the predicted value of yt obtained by
the model, and ȳ is the sample mean of yt .

4 Analysis results
The earthquake is motion to cancel distortion based on
various causes of underground bedrock. Therefore, solar
activities (SA’s) may cause only weak earthquakes. At first,
we applied auto PO regression models to EQ3-3.9, and
parameters were successfully estimated, whereas parame-
ters of NB based GARX did not converge. This may come
from the fact that the mean structure has changed around
2009. (Recall the time series of EQ3-3.9 in Figure 1).
Furthermore, these models were very poor for large earth-
quakes EQ5-5.9 and more. In this section, we only show
the estimation results on EQ4-4.9 as the response variable.
On the basis of the GARX models introduced in the

previous section, we constructed one-step-ahead models
for the frequency of the earthquakes EQ4-4.9. We set the
maximum time lag for model search to 14 (days), and
proper time lags equal to or smaller than 14 were selected,
i.e. the past two-week observations were considered to

predict a frequency of EQ4-4.9 of the next day. The com-
putations were conducted by using the R package named
GAMLSS [1].
Models 1-1, 2-1 and 3-1 in Table 4 show the optimal

models when EQ’s are used as the exogenous variables
for the prediction of EQ4-4.9. PO(μt) means the auto
PO regression. NB(μt , σ) and NB(μt , σt) mean the GARX
models based on NB distributions with common and
time-varying sigma parameters, respectively. The sigma
parameter of Model 3-1 is estimated when its mean
is fixed by the mean of Model 2-1. Time lags of each
response variable are listed in Table 4. For example, time
lags 1-5 mean that the variables at time t-1, t-2, . . ., t-5 are
used in the GARX models.
Models 1-2, 2-2 and 3-2 in Table 4 examined additional

effects of SA’s. Model 1-2 is derived by adding the optimal
SA’s to the mean of Model 1-1. Similarly, the additional
effects to Models 2-1 and 3-1 are evaluated by Models 2-2
and 3-2 respectively.
Table 4 indicates that: (a) PO(μt) is of the highest R2,

however, BIC is larger than other two models; (b) The
structures of NB(μt , σ) and NB(μt , σt) are much simpler
than PO(μt), and NB(μt , σt) has the minimum BIC. This
observation is valid to the case whose exogenous variables
are {EQ’s} or {EQ’s, SA’s}.
Here, we examine the effect of SA’s to EQ4-4.9. The

log likelihood ratio statistic testing of the additional effect
fromModels 1-1 to 1-2 is given by

2 log{L(Model 1-2)/L(Model 1-1)}
= BIC(Model 1-1) − BIC(Model 1-2) + log(n) × 42

= 23015.3 − 22625.4 + 329.3 = 719.2

where L(M) denotes themaximum likelihood of modelM,
n = 2557 − 14 is a sample size, and 42 denotes a num-
ber of additional SA variables of Model 1-2. Under the
null hypothesis: SA’s cause no effect to EQ4-4.9, the log
likelihood ratio asymptotically follows a chi-square distri-
bution with 42 degrees of freedom because they are hier-
archic each other. Obviously, SA’s are highly significant.
Similar comparisons of Models 2-1 vs 2-2 and Models 3-1
vs 3-2 show that the SA’s have extremely significant effect
to EQ4-4.9.
Table 5 shows the optimal GARX models including

additional exogenous variables about the solar activi-
ties and the magnetospheres. The results show that:
(a) PO(μt) remains to have the highest R2, and BIC is
improved, compared with Model 1-2 in Table 4; (b) R2

and BIC in Table 5 are all improved, compared with cor-
responding models in Table 4; (c) NB(μt , σt) in this table
has the minimum BIC among the models in both tables.
Comparing the coefficients of determination, it is

observed that PO regressions fit well to high frequency
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Table 4 The optimal hierarchic models for EQ4-4.9 with exogenous variables {EQ’s} or {EQ’s, SA’s}

Model Parameter(s) Variables Time lags R2 BIC

EQ4-4.9 1-5 7 8 11 12 14

μt of PO(μt) EQ3-3.9 1 6 10 12

1-1 EQ5-5.9 1-5 9-12 14 0.5649 23015.3

μt is regressed by EQ’s EQ6-6.9 3 4-8 11 13

EQ7-7.9 1-3 5 6 11 13 14

EQ8-9.9 3 4-8 11 13

B 3 7 9 11 12

T 2 3 5 7 8 10

μt of PO(μt) D 2 4 10

1-2 V 3 4 5 10 11

μt is regressed by EQ’s P 1 2 4 10 11 0.5955 22625.4

of Model 1-1 and Ey 1 3 5 6 8 14

SA’s additionally SSN 1 7

DST 5 7 8 10 11

PCI 3 4 9 11 14

EQ4-4.9 1-4 7 13 14

μt of NB(μt , σ) EQ3-3.9 1 8

2-1 EQ5-5.9 1 2 4 5 7 14 0.5508 18830.0

μt is regressed by EQ’s EQ6-6.9 3 8

EQ7-7.9 1

EQ8-9.9 1

B

T 10

μt of NB(μt , σ) D

2-2 V 5

μt is regressed by EQ’s P 0.5576 18800.0

of Model 2-1 and Ey

SA’s additionally SSN 7

DST

PCI

EQ4-4.9 3 5 13

σt of NB(μt , σt) EQ3-3.9

3-1 EQ5-5.9 7 0.5195 18601.2

σt is regressed by EQ6-6.9 1

EQ’s where μt was EQ7-7.9

estimated by Model 2-1 EQ8-9.9

B

σt of NB(μt , σt) T

D 1 12

3-2 σt is regressed by EQ’s V

of Model 3-1 and P 0.5016 18577.0

SA’s additionally Ey

where μt was estimated SSN

by Model 2-2 DST

PCI
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Table 5 The optimal GARXmodels for EQ4-4.9 in terms of earthquakes and solar activities

Parameter(s) Variables Time lags R2 BIC

EQ4-4.9 1 - 5 7 11 - 12 14

EQ3-3.9 1 4 6 8 10 11

EQ5-5.9 2 4 6 8 9-12 14

EQ6-6.9 2-4 6-8 11 13 14

EQ7-7.9 1-3 5 7 11 14

EQ8-9.9 1 9-12 13

B 3 6 7 9 11 12 0.5968 22613.1

μt of PO(μt) T 2 3 5 7 8

D 2 4 7 10 11

V 3 4 5 10

P 1 2 4 7 10

Ey 1 3 5 8 11 13

SSN 7

DST 5 7 8 10 11

PCI 3 4 6 9 14

EQ4-4.9 1 - 4 7 10 13

EQ3-3.9 1 8 13

EQ5-5.9 1 2 4 5

EQ6-6.9 3

EQ7-7.9 1

EQ8-9.9 1

B 0.5570 18793.6

μt of NB(μt , σ) T 10

D

V 5

P

Ey

SSN 7

DST

PCI

EQ4-4.9 4

EQ3-3.9

EQ5-5.9 7

EQ6-6.9 1

EQ7-7.9

EQ8-9.9

σt of NB(μt , σt) B 0.5311 18560.0

with the estimated μt T

given in the above D 1 12

V

P

Ey

SSN

DST

PCI
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data than NB based regressions do. However, comparing
of BIC values, we can conclude that the NB based regres-
sions are superior to the PO regressions. Also we can see
that the exogenous variables about the solar activities and
the magnetospheres improved each GARX model. The
improvement of R2 is not so large, but still these variables
are statistically significant for EQ4-4.9.

5 Conclusions
In this research, we investigated the relation between
the solar activities and the earthquakes. We constructed
the GARX models for the earthquakes 4 ≤ M ≤ 4.9, on
the basis of the Poisson and the negative binomial distri-
butions. The GARX models in the previous section show
that:

1. The PO regressions always tried to fit large values of
the frequency in the data and consequently selected
complex models, although they had relative high
coefficients of determination.

2. The negative binomial distribution based GARX
models were simpler than the auto PO regression,
meanwhile, they had smaller BIC values.

3. Comparing Tables 4 and 5, the GARX models with
the exogenous variables about the solar activities and
the magnetospheres improved both the coefficient of
determination and BIC. That is, these variables are
statistically significant for EQ4-4.9.

Wehave also tried to construct themodels for the earth-
quakesM ≥ 5, however, we cannot find that the variables
about the solar activities and the magnetospheres can
improve the GARX models.
It is obvious that the GARX models for the earthquakes

are far from prediction, especially for the large earth-
quakes with extremely complex nonlinear dynamics. In
addition, the large earthquakes can cause the high fre-
quency of the aftershocks in a short period. For example,
Figure 1 shows that gathered aftershocks caused by the
Touhoku earthquake happened in north-east Japan. This
makes the frequency of the weak earthquakes cannot obey
a single probability distribution like the negative binomial
distribution. For this reason, mixture distributions will be
considered for GARX in the future.
In the past 20 years, a lot of novel geophysics and

space data become available, with respect to the develop-
ments of the technologies of sensing and measurements.
Although the earthquakes are not predicable for now, we
can try to reveal the relations among the earthquakes, the
earth environment and the solar activities statistically, on
the basis of various models and data.
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