
Okumura Pacific Journal of Mathematics for Industry (2015) 7:4
DOI 10.1186/s40736-015-0014-4

ORIGINAL ARTICLE Open Access

A public key cryptosystem based on
diophantine equations of degree increasing
type
Shinya Okumura

Abstract

In this paper we propose a new public key cryptosystem based on diophantine equations which we call of degree
increasing type. We use an analogous method to the “Algebraic Surface Cryptosystem” (ASC) proposed by Akiyama,
Goto and Miyake. There are two main differences between our cryptosystem and ASC. One of them is to twist a
plaintext by using some modular arithmetic to increase the number of candidates of the plaintext in order to
complicate finding the correct plaintext. Another difference is to use a polynomial of degree increasing type to
recover the plaintext uniquely even if the plaintext was twisted. Although we have not been able to give a security
proof, we give some discussions on how secure our cryptosystem is against known attacks including the ideal
decomposition attack, which can break the one-wayness of ASC.

Keywords: Diophantine equation; Post quantum cryptography; Public key cryptography

1 Introduction
After Diffie and Hellman proposed the concept of pub-
lic key cryptography [11], the theory of cryptography
has been developed rapidly and has contributed to the
security of networks. This cryptosystem is based on com-
putationally hard problems, for example factorization of
large integers and computation of discrete logarithm in
large finite groups. The most famous public key cryp-
tosystems are the RSA cryptosystem [27] and elliptic
curve cryptosystem [17,22]. Although these cryptosys-
tems have been studied by many researchers, efficient
attacks have not been found in general. However, Shor
showed that factorization of integers and computation of
discrete logarithm are done efficiently by using quantum
computers [28]. So it is important to find new compu-
tationally hard problems which are intractable even with
quantum computers and can be used to construct cryp-
tosystems. We expect that the diophantine problem is
one of such problems. This problem is to find integral or
rational solutions of a given multivariate polynomial with
integer coefficients. Despite many researchers’ endeavor

Correspondence: s-okumura@imi.kyushu-u.ac.jp
Kyushu University, 744, Motooka, Nishi-ku, 819-0395 Fukuoka, Japan

(see e.g. [14]), this problem is usually a very difficult prob-
lem.MoreoverMatijasevič showed that there is no general
method which determines the solvability of an arbitrary
diophantine equation [10]. On the other hand, for any
integers a1, a2, · · · , an, it is easy to find a polynomial
X(x1, · · · , xn) ∈ Z[x1, · · · , xn] with X(a1, a2, · · · , an) =
0 (see section 3.4.1). So we can expect that diophan-
tine equations can be used to construct a new public
key cryptosystems. Indeed some cryptosystems based on
this problem have already been proposed [15,19,34]. But
the one-wayness of the cryptosystem proposed in [19]
was broken [9]. On the other hand, cryptosystems in
[15,34] are interesting in theory, but these cryptosystems
can be used only a few times with the same key ([15],
Proposition 2).
We can also consider the diophantine problem over

global function fields. This problem is also hard and it is
proved that there is no general method which determines
the solvability of an arbitrary diophantine equation [25].
The Algebraic Surface Cryptosystem (ASC) proposed in
[1] is based on the hardness of the section finding prob-
lem (SFP) which can be viewed as a diophantine problem
overFp[t] (orFp(t)).More precisely, let p be a prime num-
ber and X(x, y, t) ∈ Fp[x, y, t] a polynomial which defines

© 2015 Okumura; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto: s-okumura@imi.kyushu-u.ac.jp
http://creativecommons.org/licenses/by/4.0

Okumura Pacific Journal of Mathematics for Industry (2015) 7:4 Page 2 of 13

a surface S with a fibration S → A
1
Fp

over the affine t-
line. The SFP is to find ux(t),uy(t) ∈ Fp[t] such that
X(ux(t),uy(t), t) = 0.
In number theory, there are many analogous problems

between number fields and function fields. There are
many cases where problems over function fields have been
solved while the corresponding problems have hardly
been solved. For example, there is an algorithm to fac-
torize elements of Fp[t] in probabilistic polynomial time
[2,7], while the best known algorithm (the general num-
ber field sieve) for fuctorization in Z takes subexponential

time O
(
e(c+o(1))(logN)

1
3 (log logN)

2
3
)
, where c = (9

64
) 1
3 and

N is an integer which we want to factorize [18]. The
Riemann Hypothesis for function fields was proved by
André Weil [33], while the Riemann Hypothesis for Z still
seems far beyond our reach. The abc conjecture for func-
tion fields (the Mason-Stothers Theorem) was proved in
[21,29], while a proof of the abc conjecture for Z was
announced just a few years ago by Shinichi Mochizuki
[23].
In this paper we consider diophantine equations of

degree increasing type (see Definition 3.1) over inte-
gers and propose a new public key cryptosystem whose
security relies on the hardness to find a rational solu-
tion to them. In our cryptosystem we use a polynomial
X(x1, · · · , xn) ∈ Z[x1, · · · , xn] and integers d, e ∈ Z

satisfying certain conditions as public keys and integers
a1, · · · , an satisfying X

(a1
d , · · · , and

) = 0 as secret keys.
Our method is to mix a plaintext (this is a polynomial)
with other polynomials and cover the mixed polynomial
with public key. To recover the plaintext we use secret keys
and some modular arithmetic. This method is analogous
to ASC except for using modular arithmetic. Although
the one-wayness of ASC was broken by the ideal decom-
position attack [12], our analysis (section 4) shows that
our cryptosystem has resistance against some possible
attacks including the ideal decomposition attack. How-
ever, we have not been able to give a security proof
of it. Finally, we estimate the size of keys of our cryp-
tosystem. This paper aims to design a scheme with 128
bit-security level. Our estimation shows that if we use
integers d, e and a diophantine equation with n vari-
ables and total degree w as the public key, then the size
of the secret key is at most

(
� 128
n−1� + 1

)
n + �log2 d −

log2 ϕ(d)� bits and the size of the public key is at most(
� 128
n−1� + 76 + �log2 d − log2 ϕ(d)�

)
w+65+�log2 e� bits.

We also estimate the size of ciphertexts to be at most
3
2 (w

2 +w)(129+130w+�log2 w�)+129+65(w−1) bits.
This paper is organized as follows: In section 2 we

give a brief review of ASC and known attacks against
it. In section 3 we describe our cryptosystem includ-
ing some remarks on it and give a method to construct

a diophantine equation of degree increasing type with
a given solution. In section 4 we analyze its security
against some possible attacks. In section 5 we estimate
the size of keys and ciphertexts under some assumptions.
In section 6 we give some examples of the size of keys
and ciphertexts together with the time which it took to
encrypt and decrypt.

2 Review of ASC
In this section we give a brief review of ASC and known
attacks against it (for details, see [1]). Let p be a prime
number. The ASC makes use of a section to a fibration of
an algebraic surface to the afine line over Fp.

2.1 Notation
Let p be a prime number and Fp a finite field with
p elements. For a polynomial g = ∑

i,j gij(t)xiyj =∑
i,j,k gijkxiyjtk ∈ Fp[x, y, t] we define

�
(p)
g := {(i, j) ∈ Z

2 | gij(t) �= 0},
�

(p)
g := {(i, j, k) ∈ Z

3 | gijk �= 0}.
For two subsets �1, �2 ⊂ (Z≥0)2 we define

�1�2 := {(i1 + i2, j1 + j2) | (i1, j1) ∈ �1, (i2, j2) ∈ �2}.
This means that if �

(p)
i = �

(p)
fi for some fi ∈ Fp[x, y, t],

then �1�2 = �
(p)
f1f2 . For each ideal J = (f1, . . . , fn) ⊂

Fp[x, y, t], each polynomial g ∈ Fp[x, y, t] and eachmono-
mial ordering <, there are polynomials h, r ∈ Fp[x, y, t]
such that h ∈ J , g = h + r and that no monomial of r is
in the ideal generated by the leading monomials of fi for
i = 1, . . . , n. The r may depend on the choice of a system
of generators of J , but is uniquely determined (for a fixed
monomial ordering of Fp[x, y, t]) if we calculate it using a
Gröbner basis of J . Then this unique r is called the nor-
mal form of g with respect to J and <, and we denote it by
NFJ (g) (see [8]).

2.2 Key generation
1. Secret key

Choose two polynomials ux(t), uy(t) ∈ Fp[t] of
degree d.

2. Public key
For k = 1, 2, 3, choose finite subsets �

(p)
k ⊂ (Z≥0)2

and Dk =
{
d(k)
ij | (i, j) ∈ �

(p)
k

}
⊂ Z≥0 so that the

following holds:

(i) �
(p)
2 ⊂ �

(p)
1 �

(p)
3 .

(ii) For any polynomial fk = ∑
(i,j)∈�

(p)
k

f (k)
ij (t)xiyj

∈ Fp[x, y, t] (k = 1, 2, 3) with �
(p)
fk = �

(p)
k and

deg f (k)
ij (t) = d(k)

ij , we have

Okumura Pacific Journal of Mathematics for Industry (2015) 7:4 Page 3 of 13

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

degx f1 < degx f2 < degx f3,
degy f1 < degy f2 < degy f3,
degt f1 < degt f2 < degt f3,
(degx f2, degy f2, degt f2) ∈ �

(p)
f2 ,

(degx f3, degy f3, degt f3) ∈ �
(p)
f3 .

(1)

Construct an X(x, y, t) = ∑
(i,j)∈�

(p)
1

cij(t)xiyj ∈
Fp[x, y, t] such that X(ux(t),uy(t), t) = 0, deg cij(t)
= d(1)

ij and cij(t) �= 0 for (i, j) ∈ �
(p)
1 . In section 2.5

we give a method to construct such a polynomial. For
i = 1, 2, 3, make X, �(p)

i and Di public.

2.3 Encryption
Assume that the sender wants to send a polynomial
m(x, y, t) = ∑

(i,j)∈�
(p)
2

mij(t)xiyj ∈ Fp[x, y, t] with

degmij(t) = d(2)
ij for (i, j) ∈ �

(p)
2 .

1. For k = 1, 2, choose random polynomials in
Fp[x, y, t]:

sk =
∑

(i,j)∈�
(p)
1

s(k)ij (t)xiyj,

rk =
∑

(i,j)∈�
(p)
3

r(k)ij (t)xiyj,

f =
∑

(i,j)∈�
(p)
3

fij(t)xiyj,

such that deg s(k)ij (t) = d(1)
ij and deg r(k)ij (t) =

deg fij(t) = d(3)
ij . Note that from (1), we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

degx X < degx m < degx f ,
degy X < degy m < degy f ,
degt X < degt m < degt f ,
(degx m, degy m, degt m) ∈ �

(p)
m ,

(degx f , degy f , degt f) ∈ �
(p)
f .

(2)

2. Put Fi := m+ sif + riX for i = 1, 2, and send (F1, F2).

2.4 Decryption
1. For i = 1, 2, compute

hi(t) := Fi(ux(t),uy(t), t)
= m(ux(t),uy(t), t)

+si(ux(t),uy(t), t)f (ux(t),uy(t), t).

2. Factorize h1 − h2 and find a factor h3 of it whose
degree is equal to deg f (ux(t),uy(t), t). Note that
from (2), we have

deg f (ux(t),uy(t), t) = deg h3 > degm(ux(t),uy(t), t).

3. Compute h4(t) := h1(t) (mod h3(t)). Note that if h3
divides s1(ux(t),uy(t), t)f (ux(t),uy(t), t), then
h4 = m(ux(t),uy(t), t).

4. Extractm(x, y, t) from h4 by solving the following
linear equation

h4 =
∑

(i,j,k)∈�
(p)
m

mijkuixu
j
ytk ,

in variablesmijk for (i, j, k) ∈ �
(p)
m , and put

m′(x, y, t) :=
∑

(i,j,k)∈�
(p)
m

mijkxiyjtk .

5. We can verify whetherm′ = m or not by a MAC
(message authentication code) ofm. If the
verification fails, then go back to step 2 and choose
another factor of h1 − h2.

2.5 Construction of X(x, y, t)
We describe a method to construct a polynomial
X(x, y, t) ∈ Fp[x, y, t] such that X(ux(t),uy(t), t) = 0 for
given polynomials ux(t), uy(t) ∈ Fp[t].

1. Choose a finite subset (0, 0) ∈ �(p) ⊂ (Z≥0)2 and
D := {(dij | (i, j) ∈ �(p)} ⊂ Z≥0.

2. Choose random non-zero polynomials cij(t) of
degree dij for (i, j) ∈ �(p)

� {(0, 0)}.
3. Compute c00(t) := − ∑

(i,j)∈�(p)�{(0,0)} cij(t)uixu
j
y.

4. Define

X :=
∑

(i,j)∈�(p)

cij(t)xiyj.

2.6 Known attacks
We describe four possible attacks against ASC. For more
details, see [1], section 5 and [12,24].

2.6.1 Reduction to solving amultivariate equation system
Let

f ′(x, y, t) =
∑

(i,j,k)∈�
(p)
f

f ′
ijkx

iyjtk ,

s′(x, y, t) =
∑

(i,j,k)∈�
(p)
s1

s′ijkx
iyjtk ,

r′(x, y, t) =
∑

(i,j,k)∈�
(p)
r1

r′ijkx
iyjtk ,

m′(x, y, t) =
∑

(i,j,k)∈�
(p)
m

m′
ijkx

iyjtk ,

where f ′
ijk , s

′
ijk , r

′
ijk and m′

ijk are variables. If one can get f
by solving the following quadratic equation system

F1 − F2 = (s1 − s2)f + (r1 − r2)X = s′f ′ + r′X,

Okumura Pacific Journal of Mathematics for Industry (2015) 7:4 Page 4 of 13

then one may get m by solving NFI(m′) = 0, where
I = (F1, f ,X) ⊂ Fp[x, y, t]. In [1], it is pointed out that
if #�(p)

f > 50 and #�(p)
s1 > 50, then finding solutions of

this system becomes computationally intractable, even if
the r′ijk ’s are eliminated by substituting rational points of
X over a finite extension of Fp.

2.6.2 Reduction attack by Iwami [16]
Since X is made public, one can try to divide F1 − F2 by
X to find f in the remainder. But f does not appear in the
remainder because of (2). For this attack, see also [31].

2.6.3 Rational point attack by Voloch [32]
Let F(x, y, t) := F1 − F2. Let f ′(x, y, t) and s′(x, y, t) be as in
section 2.6.1. Let g(x, y, t) := s′(x, y, t)f ′(x, y, t). We write

g(x, y, t) =
∑

(i,j,k)∈�
(p)
g

gijkxiyjtk ,

where gijk are polynomials in the coefficients of s′ and
f ′ for (i, j, k) ∈ �

(p)
g . For a large positive integer L and

� = 1, . . . , L, if one can find rational points (x�, y�, t�) on
X(x, y, t) = 0 over a certain extension field of Fp, then one
may be able to get (s1− s2)f by solving the following linear
equation system

g(x�, y�, t�) = F(x�, y�, t�)(� = 1, . . . , L). (3)

Then one can find f by factorization and get m as in
section 2.6.1. However, one cannot determine f and m
uniquely. If g0(x, y, t) ∈ Fp[x, y, t] satisfies (3), then g0+rX
also satisfies (3) and has the same form as g for any poly-
nomial r(x, y, t) ∈ Fp[x, y, t] having the same form as f . In

[1], it is pointed out that if p#�
(p)
r = p#�

(p)
f > 2100, then we

may avoid this attack.

2.6.4 Ideal decomposition attack
As mentioned above, we can design ASC to avoid
the above three attacks. However, in [12] Faugére and
Spaenlehauer proposed a new attack called the ideal
decomposition attack and claimed that this attack can
fully break ASC. The idea of this attack is to recon-
struct the ideal I := (m, f ,X) in Fp[x, y, t] or the ideal
J := (m+ z, f ,X) in Fp(t)[x, y, z] or (Fp[t] /(P(t)))[x, y, z]
from the data (F1, F2,X) by using the ideal decomposition
(F1 − F2,X) = ((s1 − s2)f ,X) = I1

⋂
I2 for some ideals

I1 ⊃ (f ,X) and I2. Then the following equality holds:

(F1 + z, F2 + z,X) + I1 = (m + z, f ,X).

(Note that, essentially, a resultant was used to reconstruct
J in [12]). Let m′ be as in section 2.6.1. Then one can get
m by solving NFI(m′) = 0 or NFJ (m′ + z) = 0, where
z is a new variable and P is an irreducible polynomial in
Fp[t]. There are three versions of this attack called the
Level 1, the Level 2 and the Level 3 attack, respectively.

The largest difference between these attacks is the poly-
nomial ring under consideration. In the Level 1 attack, the
polynomial ring Fp[x, y, t] is used, and they gave an algo-
rithm to reconstruct the ideal I ⊂ Fp[x, y, t]. The most
time consuming computation in this attack is to compute
a Gröbner basis of I to solve NFI(m′) = 0. In [12], it is
pointed out that the Level 1 attack is not efficient and can-
not break ASC for the recommended parameters. In the
Level 2 attack, the polynomial ring Fp(t)[x, y, z] is used. In
this case they gave an algorithm (which is similar to the
Level 1 attack) to reconstruct the ideal J ⊂ Fp(t)[x, y, z].
Note that the new variable z is necessary because the
ideal (m, f ,X) is generically equal to Fp(t)[x, y] (see [12]
section 3.2). The key which accelerates the computation
of Gröbner basis is the following observation: the polyno-
mials occuring in ASC have a high degree in t and a low
degree in x and y. Thus, it is natural to regard these poly-
nomials as elements of Fp(t)[x, y] rather than elements of
Fp[x, y, t]. To make this attack more practical, in the Level
3 attack a modular arithmetic was used, i.e., the polyno-
mial ring (Fp[t] /(P(t)))[x, y, z] is used for an irreducible
polynomial P(t) with degP > degt m. The degree in t of
the polynomials appearing in the computation of Gröbner
basis is bounded by degP(t) and so using a polynomial P
of small degree, for example degP = degt m + 1, makes
this attack becomes more efficient than the Level 2 attack.
Moreover, it is also possible to use a polynomial P(t) =∏

i Pi(t) such that Pi(t)’s are distinct irreducible polyno-
mials and

∑
i degPi > degt m. In this case for each i we

computem (mod Pi) and getm by the Chinese Remainder
Theorem. Since degPi < degP, we may have more effi-
cient attack by using P having an appropriate number of
irreducible factors and degree if degt m is large. Now, we
give an algorithm of the Level 3 attack.

1. Choose a constant C and an integer
n ≈ degt(m) · log p/C. Choose n irreducible
polynomials P1, . . . ,Pn of degree ≈ C/ log p such
that

∑
1≤i≤n degPi > degt m. Set i = 1.

2. Let Ki := Fp[t] /(Pi).
3. Let F(Pi)

k := Fk (mod Pi) and X(Pi) := X (mod Pi).
Compute Q(y) := Resx(F(Pi)

1 − F(Pi)
2 ,X(Pi)) ∈ Ki[y],

the resultant of F(Pi)
1 − F(Pi)

2 and X(Pi) with respect to
x.

4. Factor Q(y) and let Q0(y) be an irreducible factor of
highest degree.

5. Compute a Gröbner basis of the ideal
J := (F(Pi)

1 + z, F(Pi)
2 + z,X(Pi),Q0) ⊂ Ki[x, y, z] with

respect to the graded reverse lexicographical
ordering.

6. Using the above Gröbner basis, solve the following
linear equation system over Ki to getm(Pi) := m
(mod Pi)

Okumura Pacific Journal of Mathematics for Industry (2015) 7:4 Page 5 of 13

NFJ(m′ + z) = 0,

wherem′ is as above. If the system has no solution,
then go back to step 4 and choose another factor ofQ.

7. If i < n, then replace i by i + 1 and go back to step 2.
8. Recoverm fromm(Pi) by using the Chinese

Remainder Theorem.

3 Our cryptosystem
3.1 Notation
We denote by Z[x] := Z[x1, . . . , xn] the polynomial ring
with n variables. For a vector i := (i1, . . . , in) ∈ (Z≥0)n

we write xi := xi11 · · · xinn and
∑

i := ∑
1≤j≤n ij. For

a finite subset � ⊂ (Z≥0)n and a polynomial f =∑
(i1,...,in)∈� fi1···inx

i1
1 · · · xinn = ∑

i∈� fixi ∈ Z[x] we define

�f := {i ∈ (Z≥0)
n | fi �= 0},

�f := {(i, bi) ∈ �f × Z>0 | 2bi−1 ≤ |fi| < 2bi}.
We call �f the support of f . For example, for f1 =

5x41x22x3 − 13x21x2 + 7x3 + 2 and f2 = 8x21x22x3 − 9x1x22 +
6x3 − 11, we have

�f1 := {(4, 2, 1), (2, 1, 0), (0, 0, 1), (0, 0, 0)},
�f1 := {(4, 2, 1, 3), (2, 1, 0, 4), (0, 0, 1, 3), (0, 0, 0, 2)},
�f2 := {(2, 2, 1), (1, 2, 0), (0, 0, 1), (0, 0, 0)},
�f2 := {(2, 2, 1, 4), (1, 2, 0, 4), (0, 0, 1, 3), (0, 0, 0, 4)}.

We denote by wf the total degree of f . Define

H(f) := max{|fi| | i ∈ �f }.
For a vector v := (v1, . . . , vn) ∈ Q

n, we denote by f (v)
the value of f at v. For an integer d, we denote by v/d the
vector

(v1
d , . . . ,

vn
d

)
. For each ideal J ⊂ Q[x], each polyno-

mial f ∈ Q[x] and each monomial ordering <, we denote
byNFJ (f) a normal form of f with respect to J and<. For a
polynomial f ∈ Z[x] and an integer m, we denote by f (m)

the polynomial f (modm) ∈ (Z/mZ)[x].

3.2 Polynomials of degree increasing type
Before we describe our cryptosystem, we define the fol-
lowing notion which is one of our key ideas to construct
our cryptosystem.

Definition 3.1. Define a map σ : Zn −→ Z by i
→ ∑
i.

A polynomial X ∈ Z[x] is of degree increasing type if σ |�X
is injective. In other words, X is of degree increasing type
if and only if for each k ∈ Z, X has at most one term of
degree k.

Remark 3.2. We can prove that there is no general algo-
rithm to solve an arbitrary diophantine equation of degree
increasing type in Z. This can be seen as follows: Sup-
pose T ∈ Z[x] is an arbitrary polynomial. It is easy
to see that by making a change of variables xi
→ xqii

with suitable qi’s, we can make T
(
xq11 , . . . , xqnn

)
of degree

increasing type. Thus if there exists an algorithm to solve
an arbitrary diophantine equation of degree increasing
type, then it can solve an arbitrary diophantine equation,
which contradicts Matijasevič’s result [10].

Example 3.3. If X(x, y) := 5x3y2 + 12xy2 + 7xy + 6x + 5,
then X is of degree increasing type.
Let X ∈ Z[x] be a polynomial of degree increasing type.

Then we can define a total order in �f as follows: for i1,
i2 ∈ �f , we define i1 ≥ i2 if

∑
i1 ≥ ∑

i2. Since �f is
finite, there is a maximal element k. We call the coefficient
of degree

∑
k of X the leading coefficient of X and denote

it by ld(X).

3.3 Outline of our cryptosystem
We use an analogous method to ASC. More precisely, we
use a polynomial X(x) ∈ Z[x] of degree increasing type
and a solution a = (a1

d , . . . ,
an
d

) ∈ Q
n to X = 0 as a public

key and a secret key, respectively. A plaintext is given as a
polynomial m ∈ Z[x]. We use the following polynomials
in Z[x] as cipher polynomials in our cryptosystem:

Fi(x) := m̃ + sif + riX(i = 1, 2, 3),

where m̃, si, f and ri are polynomials in Z[x] with �X =
�m̃ = �f = �si = �ri . The polynomial m̃ is constructed
from a plaintext polynomial m ∈ Z[x] and has large coef-
ficients (see section 3.4.2). We need to have �X = �m̃ =
�f = �si = �ri and translate m into m̃ to avoid the ideal
decomposition attack and other attacks (see section 4). It
is the lagest difference between ASC and our cryptosys-
tem. Recall that wX is the total degree of X. We compute
hi := Fi(a), H1 := (F1(a) − F2(a))d2wX , H2 := (F1(a) −
F3(a))d2wX and g := gcd(H1,H2) to get m̃(a)dwX . We
pointed out that unlike factorizing a polynomial in Fp[t],
it is hard to factorize integers and so we use three poly-
nomials as cipher polynomials and a GCD computation
to get f (a)dwX . If g = |f (a)dwX | and g > |m̃(a)dwX |, then
we can get m̃(a)dwX by computing H := h1d2wX (mod g)
and Hd−wX (mod g). If we can get m̃(a)dwX , then we can
recover m by the Recovering Algorithm (RA) described
in section 3.4.4. In order to use RA, m̃ must be of degree
increasing type (see section 3.4.4) and for security reasons
(section 4), an X must have the same support as m̃. So we
use X which is of degree increasing type.

3.4 Algorithm of our cryptosystem
Now, we describe our cryptosystem.

3.4.1 Key generation
1. Secret key

Choose a vector a = (a1, . . . , an) ∈ Z
n of a suitable

sizea such that gcd(ai, d) = 1 for i = 1, . . . , n. Make
them secret.

Okumura Pacific Journal of Mathematics for Industry (2015) 7:4 Page 6 of 13

2. Public key
Choose integers d and e of suitable sizesb such that
gcd(e,ϕ(d)) = 1. Choose an irreducible polynomial
X(x) ∈ Z[x] of degree increasing type such that
X(a/d) = 0 and #�X ≤ w = wX . Make e, X and �X
public.

We give a method to construct a public key X of degree
increasing type with X(a/d) = 0.

1. Choose a finite subset � ⊂ (Z≥0)n such that
#

{∑
i | i ∈ �

} = #�.
2. Let k = (k1, . . . , kn) be the maximal element of �.

For i ∈ �′ := � � {0, k}, choose random non-zero
integers ci.

3. Choose c0 and ck so that

ckak + c0dw

dw
= −

∑
i∈�′ ciaidw

′−∑
i

dw′ ,

where w′ = max
{∑

i | i ∈ �′}, by solving the linear
diophantine equation

ckak + c0dw = −
∑
i∈�′

ciaidw−∑
i. (4)

4. Define

X :=
∑
i∈�

cixi.

The condition on � (step 1 above) means that X is
of degree increasing type. The equation (4) means that
X(a/d) = 0.

3.4.2 Encryption
Assume that the sender wants to send a polynomial
m(x) = ∑

i∈�m mixi ∈ Z[x] (1 < mi < d and
gcd(mi, d) = 1) with �m = �X .

1. Choose a positive integer N such that Nd is larger
than the absolute value of each coefficient of X. We
assume that an upper bound of N is given.

2. Construct a polynomial m̃(x) with �m̃ = �m as
follows:
Let m̃i be an integer such that 0 < m̃i < Nd and
m̃i ≡ me

i (mod Nd), and put m̃(x) = ∑
i∈�m m̃ixi.

3. Choose a random polynomial f ∈ Z[x] with
�f = �X such that H(m̃) < ld(f) < Nd and ld(f) is
relatively prime to d. We also assume that all
coefficients of f except ld(f) are also as large as the
coefficients of m̃.

4. Choose random polynomials si and ri in Z[x] with
�si = �X and �ri = �f for 1 ≤ i ≤ 3.

5. Put Fi := m̃ + sif + riX for 1 ≤ i ≤ 3 and send
(F1, F2, F3,N).

3.4.3 Decryption
1. Compute hi := Fi(a/d) = m̃(a/d) + si(a/d)f (a/d),

H1 := (h1 − h2)d2wX and H2 := (h1 − h3)d2wX . Note
that H1,H2 ∈ Z.

2. Compute g := gcd(H1,H2) > 0, the greatest
common divisor of H1 and H2. If gcd(g, d) > 1, then
we replace g by g

gcd(g,d)
. Note that if g = f (a/d)dwX ,

then gcd(g, d) = 1 (cf. Remark 3.6.3).
3. Compute H := h1d2wX (mod g) and μ̃ := Hd−wX

(mod g). Note that if |g| > |m̃(a/d)dwX | and g
divides s1(a/d)f (a/d)d2wX , then we have

m̃(a/d)dwX =
{

μ̃ if m̃(a/d)dwX > 0,
μ̃ − g if m̃(a/d)dwX < 0.

Note that m̃(a/d)dwX �= 0 (cf. Remark 3.6.4).
4. Recoverm(x) from μ̃ or μ̃ − g by RA which we will

describe below.

3.4.4 Recovering Algorithm (RA)
We describe a method to recoverm(x) from μ̃. Let N , d, e
and �X be as above.
Input : μ̃, N , d, e and �X .
Output :m′(x) ∈ Z[x] or “false”.

1. Compute

e′ := e−1(mod ϕ(d)).

2. Let k be the maximal element of �X . Compute

m′
k :=

(
μ̃a−k

)e′
(mod d) (0 < m′

k < d),

m̃′
k :=

(
m′

k

)e
(mod Nd) (0 < m̃′

k < Nd).

3. If �′
X := �X � k = ∅, then return

m′(x) = ∑
i∈�X m

′
ixi. Otherwise, let k′ be the

maximal element of �′
X . Let w′

X := ∑
k′. Put

μ̃′ := μ̃−m̃′
ka

k

dwX−w′
X
. If μ̃′ ∈ Z, then replace μ̃, k and �X by

μ̃′, k′ and �′
X , respectively. Otherwise, return “false”.

4. Go back to step 2.

Proposition 3.4. If μ̃ = m̃(a/d)dwm̃ , then RA returns
m(x).

Proof. We assume that μ̃ = m̃(a/d)dwm̃ = ld(m̃)ak +∑
i∈�X�{k} m̃iaid

∑
k−∑

i. Because m̃ is of degree increas-
ing type, we have

∑
k − ∑

i ≥ 1. It implies that

m′
k ≡ ld(m̃)e

′ ≡ mee′
k ≡ mk(mod d),

m̃′
k ≡ m̃k(mod Nd).

Okumura Pacific Journal of Mathematics for Industry (2015) 7:4 Page 7 of 13

Because ld(m) < d, we have

mk = m′
k ,

m̃k = m̃′
k .

Thus, μ̃′ = m̃k′ak′ + ∑
i∈�′

X�{k′} m̃iaid
∑

k′−∑
i. Because

m̃ is of degree increasing type, we have
∑

k′ − ∑
i ≥ 1. It

implies that we can getmk′ as above. Similarly, we can get
mi for i ∈ �X � {k, k′}.

Remark 3.5. We give some remarks on our cryptosystem.

1. If d = p is a prime number, we may choose e = p
and e′ = 1.

2. We should choose d so that the computation of ϕ(d)

is easy. For example, if d is a prime number, then
ϕ(d) = d − 1.

3.5 Improvement in recovering algorithm
In step 2 of the decryption process we can write g =
f (a/d)dwX t (t ∈ Z). If |t| > 1, then, in step 3, g may
not divide s1(a/d)f (a/d)d2wX . If so, both μ̃ and μ̃ − g are
not equal to m̃(a/d)dwX . Then RA will return “false” with
high probability because d is large, ��X ≤ wX and hence
wX −w′

X becomes ≥ 2 in the middle of the process of RA.
In this case we must take the following steps:

1. If RA returned “false", then we choose a positive
integerM and construct the set
F(g,M) := {x ∈ Z | 2 ≤ x ≤ M, x|g} ⊂ Z.

2. If F(g,M) �= ∅, then we choose an element
x ∈ F(g,M) and remove x from F(g,M). Otherwise,
go back to step 1 and choose an integer which is
larger thanM.

3. Compute g′ := g
x , H

′ := h1d2wX (mod g′) and
μ̃′ := H ′d−wX (mod g′) and recoverm(x) from μ̃′.

4. If RA returned “false" again, then go back to step 2.

Wedescribe the reason why RA returns “false” with high
probability if we do not get m̃(a/d)dwX . Because ��X =
wX + 1 implies wX − w′

X = 1, we have always dwX−w′
X |(

μ̃ − m̃′
ka

k
)
. Thus in this case RA does not return “false”

even if we do not get m̃(a/d)dwX . On the other hand if
��X ≤ wX , then wX − w′

X ≥ 2 is satisfied in the middle of
the process of RA and then RA returns “false” with high
probability, if we do not get m̃(a/d)dwX . Thus we need to
improve the success probability of decryption.

Remark 3.6. 1. In step 3 of the decryption process,
we require that |g| > |m̃(a/d)dwX | to get
m̃(a/d)dwX . To satisfy this condition we impose the
condition of step 3 in the encryption process on
ld(f). Note that the fact that X is of degree increasing
type also helps to satisfy |g| > |m̃(a/d)dwX |, because

O(f) = O(xk) = O(m̃) as x1, . . . , xn → ∞(∑
k = wX

)
, if X is of degree increasing type. Thus,

if fk > m̃k and |a1|, . . . , |an| � d, then
|f (a/d)dwX | > |m̃(a/d)dwX | is satisfied with high
probability because | a1d |, . . . , | and | � 1. We also note
that we can estimate whether m̃(a/d)dwX > 0 or not
by the same reason with high probability.

2. If |a1|, . . . , |an| ≈ d or |a1|, . . . , |an| � d, then the
argument in Remark 3.6.1 is not correct because
| a1d |, . . . , | and | ≈ 1 or | a1d |, . . . , | and | � 1. So in this
case a and f should be chosen so that a1, . . . , an > 0
and, for each i ∈ �f , the absolute value of the i-th
coefficient of f is larger than that of the monomial xi
of m̃ to satisfy |f (a/d)dwX | > |m̃(a/d)dwX |.

3. We need to have gcd(f (a/d)dwX , d) = 1 to compute
the inverse element of d (mod g). We show that this
condition is satisfied. Let k be the maximal element
of �f . It follows from the expression

f (a/d)dwX = fkak +
∑

i∈�f�{k}
fiaidwX−∑

i,

that if gcd(f (a/d)dwX , d) = d′ > 1, then fk is
divisible by d′ because gcd(ak , d) = 1 is satisfied, and∑

i∈�f�{k} fiaidwX−∑
i is divisible by d. This

contradicts our assumption because we assume
gcd(fk , d) = 1 in step 3 of the encryption process.

4. We also need to have m̃(a/d)dwX �= 0 to recoverm.
We show that this condition is satisfied. Let k be as
above. It follows from the expression

m̃(a/d)dwX = m̃kak +
∑

i∈�m̃�{k}
m̃iaidwX−∑

i,

that if m̃(a/d)dwX = 0, then m̃k is divisible by d. This
is a contradiction because gcd(mk , d) = 1 implies
gcd(m̃k , d) = 1.

5. Recall that the t in section 3.5 is troublesome if it is
large. We experimented 100000 times on the value of
t for each set of parameters in the following tables.
According to these results, we can expect that t is
smaller than 1000 with high probability. So we can
get m̃(a/d)dwX in practical time with high
probability. However, we do have t >> 1000, though
it happens with low probability. In this case we would
not be able to decrypt the plaintext in practical time
by the simple trial. Thus if we want to design a
scheme with lower probability of decryption failure,
we need an efficient integer factorization algorithm
in the above steps Tables 1, 2 and 3.

4 Security analysis
In this section although we have not been able to give
a security proof, we analyze the effectiveness of some

Okumura Pacific Journal of Mathematics for Industry (2015) 7:4 Page 8 of 13

Table 1 Quantities of t for |t| < 100

No. n wX #�X |ai| (bit) |t| < 100 (time)

1 3 5 5 66 99341

2 3 7 7 66 99357

3 3 10 10 66 99398

possible attacks for the one-wayness of our cryptosys-
tem. We also discuss the sizes of d, e and N to achieve
128 bit-security. First, we note that the attacks against
ASC described in section 2.6 are applicable also to our
cryptosystem.

4.1 Reduction to solving a multivariate equation system I
Let

f ′(x) =
∑
i∈�f

f ′
i x

i,

s′(x) =
∑
i∈�s1

s′ixi,

r′(x) =
∑
i∈�r1

r′ixi,

where f ′
i , s′i and r′i are variables. One may be able to get f

by solving the following quadratic equation system

F1 − F2 = (s1 − s2) f + (r1 − r2)X = s′f ′ + r′X. (5)

The number of variables of the system is smaller than
that of the system in section 2.6.1, but experimentally a
Gröbner basis of the ideal generated by the coefficients of
F1−F2−(s′f ′+r′X) consists of quadratic polynomials and
there is no known general algorithm to solve a multivari-
ate quadratic equation system over Z or Q in polynomial
time. So solving the system would not be easy. Moreover,
if �s1 = �f = �r1 = �X , then the equalities

s′f ′ + r′X = s′
(
f ′ + tX

) + (
r′ − ts′

)
X

= (
s′ + sX

)
f ′ + (

r′ − sf ′)X,
where s and t are any integers, show that there are many
solutions of the system (5). So we may avoid this attack.

Table 2 Quantities of the t for |t| < 1000

No. n wX #�X |ai| (bit) |t| < 1000 (time)

1 3 5 5 66 99910

2 3 7 7 66 99929

3 3 10 10 66 99931

Table 3 Quantities of the t for |t| > 10000

No. n wX #�X |ai| (bit) |t| > 10000 (time)

1 3 5 5 66 32

2 3 7 7 66 12

3 3 10 10 66 11

4.2 Reduction to solving a multivariate equation system II
Let f ′(x) = ∑

i∈�f
f ′
i xi, s′(x) = ∑

i∈�s1
s′ixi and r′(x) =∑

i∈�r1
r′ixi be as in section 4.1. Let

m̃′(x) :=
∑
i∈�m̃

m̃′
ix
i,

F ′ := m̃′ + s′f ′ + r′X,

where m̃′
i are variables. Let a1 = (a11, . . . , a1n), · · · , a� =

(a�1, . . . , a�n) ∈ Z
n be n-tuples of integers. Then we have

the following multivariate equation system in f ′
i , s′i, r′i and

m̃′
i:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G1
(
m̃′

0, · · · , r′k
)
:= F ′(a1) − F1(a1) = 0

...
G�

(
m̃′

0, · · · , r′k
)
:= F ′(a�) − F1(a�) = 0.

(6)

One of the methods of solving (6) is to use the Gröbner
basis technique. However, if {g1, · · · , gh} is a Gröbner basis
of the ideal (G1, · · · ,G�), experimentally, gi is a cubic or
a quadratic polynomial with rational coefficients having
large denominators and numerators. Thus, as mentioned
in section 4.1, it would not be easy to solve (6). Moreover,
for any integers s and t we have

F ′ = m̃′ + s′(f ′ + tX) + (r′ − ts′)X.

Noting that �X = �m̃ = �f = �s1 , �si = �X and
�ri = �f for 1 ≤ i ≤ 3, we see that there are many possible
solutions of (6). Hence, we may suppose that this attack is
not efficient ifNd is sufficiently large, sayNd > 2128H(X).
Note that it is also possible to compare F ′(ai)−m̃′(ai) and
F1(ai) − F2(ai) to get f , but it would be hard because of
the same reason.

4.3 Reduction to solving amultivariate equation system III
The following attack was suggested by Professor Attila
Pethő. Let f ′, s′, r′ and m̃′ be as in section 4.2. Let S :=∑

i∈�f ′s′ Six
i and define

F ′′ := m̃′ + S + r′X,

where Si’s are variables. Then one can apply the similar
attack as in section 4.2 to F ′′. However, we may also sup-
pose that this attack is not efficient if Nd is sufficiently

Okumura Pacific Journal of Mathematics for Industry (2015) 7:4 Page 9 of 13

large, say Nd > 2128H(X). To see this, let r ∈ Z[x] be a
random polynomial with �r = �X . Then we have

F ′′ = m̃′ + (S + rX) + (r′ − r)X
= (m̃′ − r) + (S + r) + r′X.

It implies that there are many possible solution to
F ′′(a1) − F1(a1) = 0, . . . , F ′′(a�) − F1(a�) = 0, where
a1, . . . , a� are as in section 4.2. Note that S + rX has the
same form as S, and r′ − r, m̃′ − r and S+ r have the same
form as r′, m̃′ and S, respectively.

4.4 Reduction by X
Since X is made public, one can try to divide F1 − F2 by
X to find f in the remainder. But f does not appear in the
remainder if �f = �X and the absolute values of coeffi-
cients of f are larger than those of X. So this attack would
not be effective.

4.5 Rational point attack (solving X = 0)
This attack is equivalent to solving the diophantine
equation X(x) = 0. Although it is hard in general as
mentioned in introduction, one may wonder if the dio-
phantine equation X(x) = 0 may be solvable for X of
degree increasing type. However, there are no known gen-
eral algorithms to solve such diophantine equations in
polynomial time. For instance, in [20], it was proved that
the problem for determining whether there are positive
integer solutions for

ax21 + bx2 − c = 0,

where a, b and c are positive integers, is NP-complete. So
we may assume that solving the diopantine equations of
degree increasing type is hard in general.
Next, we discuss more general diophantine problems. If

one can find a vector a such that X(a/d) = 0, then one
can get m by the same process of decryption. The solu-
tion a/d is not an integral solution but a rational solution.
(Using rational solutions is suggested by Professor Noriko
Hirata-Kohno.) However, finding such rational solutions
is equivalent to finding integral solutions of G(x) :=
X(x/d)dwX = 0. (If we do not know the denominator d,
finding rational solutions ofG(x) = 0 is reduced to finding
integer solutions of the equation G

(x1
z , . . . ,

xn
z
)
zwX = 0

in n + 1 variables.) If n = 2 and G(x) = 0 defines a
curve of genus 0, 1 or a hyperelliptic curve, then there are
explicit algorithms to find all integral solutions [6,26,30].
Otherwise, in special cases there are some algorithms to
find all integral points [3,4]. Moreover, it is believed that
in many cases, diophantine equations with two variables
are solvable. Theoretically, using Baker’s method and its
improvements, explicit upper bounds of the size of solu-
tions to special equations with two variables are known
(see [13] and the references given there). (Note that if solu-
tions of a diophantine equation are sufficiently large, then

Baker’s method is not practical in general, but we want to
use a solution which is as small as possible.) However, no
efficient methods are known to find integral solutions of
diophantine equations of n variables with n ≥ 3. So we
should use a diophatine equations with at least 3 variables
as a public key of our cryptosystem. Note that in case of 3
variables, our experience in arithmetic geometry suggests
to useX of degree at least 5, because then the hypersurface
in the projective 3-space defined by (the homogenized
form of) X is of general type if it is non-singular (cf. [14],
Example F.5.1.7 and section F.5.2).

4.6 Solving X(x/d)dwX ≡ 0
(
moddwX+1)

If we use a single cipher polynomial F := m̃+rX, where r is
an integer or a polynomial inZ[x] such that rX is of degree
increasing type, and �m̃ = �rX , then it can be broken by
finding a solution to the congruence equation

X(x/d)dwX ≡ 0(mod dwrX+1), (7)

which can be computable in probabilistic polynomial
time. Let b be a solution of (7) and k the maximal ele-
ment of �rX . Then the same method as RA is applicable
as follows:

M := F(b/d)dwrX

= m̃(b/d)dwrX + r(b/d)X(b/d)dwrX

= m̃(b/d)dwrX + r(b/d)dwrX(b/d)dwX ,
mk = (Mb−k)e

′
(mod d),

m̃k = me
k(mod Nd).

Similarly, we can compute the other coefficients of m.
However, using cipher polynomials of the form

Fi := m̃ + sif + riX(i = 1, 2, 3),

we may avoid this weakness because sif obstructs to get
m̃(b/d)dwX (mod d).

4.7 Ideal decomposition attack
By using the resultant as in section 2.6.4, it is also
possible in our case to reconstruct the ideals I :=
(m̃, f ,X) ⊂ Z[x], J := (m̃ + z, f ,X) ⊂ Q[x, z] or
J(�) :=

(
m̃(�) + z, f (�),X(�)

)
⊂ (Z/�Z)[x, z] from the data

(F1, F2,X), where z is a new variable and � is a prime
number. If one can get m̃, then one can get m. A sim-
ple method to avoid this attack is to let �m̃ = �f =
�X and the coefficients of m̃ be larger than H(X). Then
m̃ cannot be determined uniquely because m̃′ + z ∈ J
implies m̃′ + z + sX + tf ∈ J for any s, t ∈ Z (note that
�m̃ = �f = �X). However, in general, we cannot deter-
mine m̃ from m̃(a/d)dwX uniquely even if we know the
secret key a. This reason is as follows: for any t ∈ Z, m̃(x)
and m̃(x) + tX(x) have the same value at a/d. So, we use
modular exponentiation to transform m into m̃ and use

Okumura Pacific Journal of Mathematics for Industry (2015) 7:4 Page 10 of 13

Euler’s theorem as in the RSA cryptosystem to recover m
from m̃(a/d)dwX in RA. This is the main idea to avoid this
attack.
Now, we analyze the effectiveness of the ideal decom-

position attack in detail. We analyze only the Level 2 and
the Level 3 attacks because, experimentally, the Level 1
attack is not efficient. First, we analyze the effectiveness of
the ideal decomposition attack of Level 2 (see [12], section
3.2), which uses the ideal decomposition

(F1 − F2,X) = ((s1 − s2) f ,X) = I1 ∩ I2 ⊂ Q[x] ,
(f ,X) ⊂ I1,

to reconstruct from the data (F1, F2,X) an ideal J ⊂
Q[x, z] which coincides with (m̃ + z, f ,X). To get m̃, we
use the fact that if a Gröbner basis of J is computed, then
m̃′ + z ∈ J if and only if NFJ (m̃′ + z) = 0 (see section 2.6.4
for more detail). But, if m̃′ + z ∈ J , then for any integers
s and t, m̃′ + z + sX + tf ∈ J is also satisfied. If the num-
ber of choices of the pairs (s, t) ∈ Z

2 is larger than 2128,
we may avoid this attack. All coefficients of m̃ and f are
smaller than Nd, but in many cases they are as large as
Nd, if me

i > Nd. So the possible choices of t may be only
0, 1 or 2. But, if Nd > 2128H(X), the number of the pos-
sible choices of s may be larger than 2128. So N should
be chosen so that Nd > 2128H(X) and e should be so
large that me

i ≥ 2e > Nd for i ∈ �m. In this case, this
attack is not assumed to be effective. Note that, because
the absolute value of coefficients of f are as large as those
of m̃, the above argument implies that choosing N satis-
fying Nd > 2128H(X) may complicate finding f from the
ideal J or I1.
Next, we analyze the effectiveness of the ideal decom-

position attack of Level 3 (see [12], section 3.3). We
assume that d is a prime number. We note that if one
got m̃(d), then one can get m. So one does not need
to get m̃. It is possible to reconstruct an ideal J(d) ⊂
(Z/dZ)[x, z] which coincides with

(
m̃(d) + z, f (d),X(d)

)
from tha data (F1, F2,X) (see the algorithm in 2.6.4). Let
m̃′(x) := ∑

i∈�m̃
m̃′

ixi, where m̃′
i are variables for i ∈ �m̃.

Assume that a Gröbner basis of J(d) is computed. Let J be
the ideal of (Z/dZ)[m′

c0, · · · , m̃′
k] generated by the coeffi-

cients ofNFJ(d) (m̃′+z). Let {g1, · · · , gh} be a Gröbner basis
of J . Then gi is linear with respect to its variables for each
1 ≤ i ≤ h. So we can use linear algebra techniques to solve
NFJ(d) (m̃′ + z) = 0. Let A be the coefficient matrix of the
equation system g1 = · · · = gh = 0. Let D be the dimen-
sion of the kernel of the linear map F

#�m̃
d → F

h
d defined

by A. Then the number of polynomials in J(d) having the
same form as m̃(d) + z is dD. So if dD > 2128, the Level
3 attack is not effective. Experimentally, D is at least 2.

Thus, this attack is not assumed to be effective if d2 ≥ 2128(
d ≥ 264

)
.

Next, we assume that d = ∏
1≤i≤k pi (k ≥ 2 and pi

are distinct prime numbers for 1 ≤ i ≤ k). If one got
m̃(pi) for 1 ≤ i ≤ k, then one can get m̃(d) and m by the
Chinese Remainder Theorem. However, because of the
above argument we may also avoid this attack, if d is suf-
ficiently large, for example d2 > 2128. Note that if d =∏

1≤i≤k p
ei
i and ei ≥ 2 for some i, this attack may not be

directly applicable, because Z/peiZ is not a domain if ei ≥
2. But, it is possible to lift a polynomial m̃(pi) ∈ (Z/piZ)[x]

to a polynomial m̃(peii) ∈ (Z/peii Z)[x] for 1 ≤ i ≤ n. There
are pei−1

i ways of such a lifting. So we may also avoid this
attack, if d is sufficiently large, for example d ≥ 264.

5 Sizes of keys and cipher polynomials
In this section we estimate the sizes of keys and cipher
polynomials so that our cryptosystem can be expected
to have 128 bit-security. First, we estimate the size of a
secret key and a public key. A typical brute force attack
is as follows: One chooses a random vector (b1, . . . , bn−1)

and factorize the polynomial X
(
b1
d , . . . ,

bn−1
d , xn

)
in xn. If

X
(
b1
d , . . . ,

bn−1
d , xn

)
has a factor of the form

(
xn − bn

d

)
for

some integer bn, then
(
b1
d , . . . ,

bn
d

)
is a solution to X = 0.

If gcd
(∏

i bi, d
) = 1, then using the solution

(
b1
d , . . . ,

bn
d

)
,

one can get m by taking the same steps as the decryption
process. So we should choose a secret key a = (a1, . . . , an)
such that |ai| is sufficiently large for i = 1, . . . , n to avoid
the brute force attack. Since the probability that a random
integer b is prime to d is ϕ(d)

d (ϕ(·) is the Euler’s function),
the number of choices of the vector (b1, . . . , bn−1) which

satisfies 2� 128
n−1 �d
ϕ(d)

≤ |bi| < 2� 128
n−1 �+1d
ϕ(d)

and gcd
(∏

i bi, d
) = 1

is at least 2
⌈

128
n−1

⌉
(n−1) ≥ 2128. Thus we should choose a

secret key so that

2
⌈

128
n−1

⌉
d

ϕ(d)
≤ |ai| <

2
⌈

128
n−1

⌉
+1d

ϕ(d)
(8)

for i = 1, . . . , n. We assume (8). Let k be the maximal ele-
ment of �X and �′

X be as in section 3.4.1. We assume that
X is constructed by the method described in section 3.4.1.
There are infinitely many solutions of (4). We claim that
we can choose a solution (c0, ck) such that |c0| ≤ |ak| and
|ck| ≤ dwX , if the following inequality is satisfied:

∣∣∣akdwX
∣∣∣ >

∣∣∣∣∣∣
∑
i∈�′

X

ciaidwX−∑
i

∣∣∣∣∣∣ . (9)

Okumura Pacific Journal of Mathematics for Industry (2015) 7:4 Page 11 of 13

To see this, let A :=
∣∣∣∑i∈�′

X
ciaidwX−∑

i
∣∣∣. If (x0, y0) is a

solution to
∣∣∣ak∣∣∣ x + dwXy = A,

then all solutions are given by
(
x0 + kdwX , y0 − kak

)
for

k ∈ Z. Looking at the first lattice point (x, y) on the line
|ak|x + dwXy = A with x > 0, we find a solution (x, y)
such that x ≤ dwX and y ≤ |ak|. Thus, we have proved the
above claim.
In many cases the minimum size of the solutions of (4)

satisfies |c0| ≈ |ak| and |ck| ≈ dwX . If the |ci|’s are so small
that (9) is satisfied, then we may assume that

H(X) =
⎧⎨
⎩

|c0| ≈ |ak| <

(
2(� 128

n−1 �+1)d
ϕ(d)

)wX

if |ak| � dwX ,

|ck| ≈ dwX if |ak| � dwX .

On the other hand, as mentioned in section 4.7, N , d
and e should be chosen so that Nd > 2128H(X), d ≥ 264
and 2e > Nd, respectively. We must determine an upper
bound ofNd and d to estimate the size of e and ck , respec-
tively. We assume that H(X) = ck , 264 ≤ d < 265
and 2128H(X) ≤ 2128dwX < 2128+65wX ≤ Nd. Then
ck ≤ 265wX and N ≥ 2128+65(wX−1). If we assume that
2128+65(wX−1) ≤ N < 2128+65(wX−1)+1 = 2129+65(wX−1),
then we should choose e so that e ≥ 129 + 65wX because
Nd < 2129+65wX . It remains to estimate the size of |ci| for
i ∈ �′

X . We think that the size of these coefficients may
be small enough to keep the size of the public key reason-
able even though we cannot prove it. For example, if |ci| <

210, then the size of X, that is
∑

i∈�X (bit length of ci), is

at most
(
� 128
n−1� + 1 + �log2 d − log2 ϕ(d)�

)
wX + 65wX +

10(#�X−2) =
(
� 128
n−1� + 66 + �log2 d − log2 ϕ(d)�

)
wX+

10#�′
X bits under the above assumptions. If wX ≈ #�X =

�′
X + 2, then the size of X ≈ (� 128

n−1� + 76 + �log2 d −
log2 ϕ(d)�)wX bits. Then the size of the secret key and the
public key is at most

(
� 128
n−1� + 1

)
n+�log2 d− log2 ϕ(d)�

bits and
(
� 128
n−1� + 76 + �log2 d − log2 ϕ(d)�

)
wX + 65 +

�log2 e� bits, respectively.
Next, we estimate the size of Fi for i = 1, 2, 3. We may

assume that the size of Fi is about the same as that of 2sif
because �f = �ri and �si = �X . Since �X = �f = �si ,
#�X ≤ wX , H(f) < Nd < 2129+65wX and H(si) ≈ H(X) <

265wX , we have

H(sif) ≤ #�XH(f)H(si) < 2129+130wXwX .

It implies that the size of 2sif is at most (130 + 130wX +
�log2 wX�)#�sif bits. So, it is important to estimate #�sif ,

Table 4 Size of keys of our cryptosystem

No. n wX #�X Secret key (bit) Public key (bit)

1 3 5 4 198 739

2 3 5 5 198 747

3 3 7 4 198 1000

4 3 7 7 198 1031

5 3 10 4 198 1393

6 3 10 7 198 1420

7 3 10 10 198 1450

explicitly. We assume �f = �si =
{
k1, . . . , k#�f

}
. Then

we can write

sif =
⎛
⎝ ∑

j∈�si

s(i)j xj
⎞
⎠

⎛
⎝∑

j∈�f

f jx
j

⎞
⎠

=
∑
j
s(i)kj f kj

x2kj +
∑
j �=h

(
s(i)kj f kh

+ s(i)kh f kj

)
xkj+kh .

It implies that

#�sif ≤
#�2

f − #�f

2
+ #�f ≤ w2

X − wX
2

+ wX .

Thus, the size of 2sif is at most(
w2
X − wX
2

+ wX

)
(130 + 130wX + �log2 wX�)

= 1
2

(
w2
X + wX

)
(129 + 130wX + �log2 wX�)

bits. Since 2128+65(wX−1) ≤ N < 2129+65(wX−1), we
conclude that the size of ciphertext is at most
3
2

(
w2
X + wX

)
(129+130wX+�log2 wX�)+129+65(wX−1)

bits.

6 Examples
In Table 4 and Table 5 we give examples of the size
of keys and ciphertexts. In Table 6 we also give exam-
ples of the time which it took to encrypt and decrypt.

Table 5 Size of ciphertext of our cryptosystem

No. n wX #�X F1(bit) F2(bit) F3(bit) N (bit)

1 3 5 4 7442 7443 7440 387

2 3 5 5 10755 10748 10752 390

3 3 7 4 9946 9942 9947 521

4 3 7 7 23907 23915 23917 515

5 3 10 4 13685 13684 13688 717

6 3 10 7 33658 33659 33667 717

7 3 10 10 57740 57749 57767 719

Okumura Pacific Journal of Mathematics for Industry (2015) 7:4 Page 12 of 13

Table 6 Encryption time and decryption time

No. n wX #�X enc. time (ms) dec. time (ms)

1 3 5 4 39 34

2 3 5 5 38 33

3 3 7 4 38 34

4 3 7 7 38 34

5 3 10 4 39 34

6 3 10 7 39 36

7 3 10 7 40 40

We use a computer with 2.80 GHz CPU (Intel(R)
Core(TM) i7-3840QM) and 8GB memory. The OS is
Windows 8.1 Pro 64 bit. We implemented in Magma
V2.19-7 [5] and the source code of our cryptosys-
tem (file name: crypto-okumura.txt) is available at
http://imi.kyushu-u.ac.jp/̃s-okumura/.

7 Conclusion
In this paper we have proposed a new public key cryp-
tosystem based on diophantine equations and analyzed its
security. It is a number field analogue of the ASC, incorpo-
rating a key idea, to avoid some attacks, of “twisting” the
plaintext by using some modular arithmetic and Euler’s
theorem as in the RSA cryptosystem. Another key idea is
to use a polynomial, as the public key, of degree increas-
ing type to recover the plaintext. In this paper we have not
studied the hardness of solving diophantine equations of
degree increasing type. Investigating the security of our
cryptosystem by using this special type of diophantine
equations is a future work.

Endnotes
aThe size of ai should be |ai| ≥ 2� 128

n−1 �+1d
ϕ(d)

for
i = 1, . . . , n, where ϕ(·) is the Euler function and d is an
integer which we will choose below. (For the reason of this
choice, see section 5).

bThe sizes of d and e should be d ≥ 264 and
e ≥ 129 + 65w, respectively. (For the reason of this
choice, see section 5).

Acknowledgements
I am grateful to my supervisor Yuichiro Taguchi for comments, corrections,
and suggestions on this research. I am also grateful to Koichiro Akiyama,
Noriko Hirata-Kohno, Attila Pethő, Takakazu Satoh and Tsuyoshi Takagi for
useful comments, suggestions and discussions.

Received: 23 December 2014 Revised: 30 March 2015
Accepted: 26 April 2015

References
1. Akiyama, K., Goto, Y., Miyake, H.: An algebraic surface cryptosystem. In:

Proceedings of PKC’09, Lecture Notes in Comput. Sci., vol. 5443,
pp. 425–442. Springer, Berlin Heidelberg, (2009)

2. Berlekamp, E.R: Factoring polynomials over large finite fields. Math.
Comput. 24, 713–735 (1970)

3. Beukers, F., Tengely, S.: An implementation of Runge’s method for
Diophantine equations, (2005). available at arXiv:math/0512418

4. Bilu, Y.: Effective analysis of integral points on algebraic curves. Israel J.
Math. 90, 235–252 (1995)

5. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24, 235–265 (1997)

6. Bugeaud, Y., Mignotte, S., Siksek, S., Stoll, M., Tengely, S.: Integral points on
hyperelliptic curves. Algebra Number Theory. 2, 859–885 (2008)

7. Cantor, D.G, Zassenhaus, H.: On Algorithms for Factoring Polynomials
over Finite Fields. Math. of Computation. 36, 587–592 (1981)

8. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms: an
introduction to computational algebraic geometry and commutative
algebra, 3rd., Undergraduate Texts in Mathematics. Springer Verlag, New
York (2007)

9. Cusick, T.W: Cryptoanalysis of a public key system based on diophantine
equations. Inform. Process. Lett. 56, 73–75 (1995)

10. Davis, M., Matijasevič, Y., Robinson, J.: Hilbert’s tenth problem, Diophantine
equations: positive aspects of a negative solution, In: Browder, FE (ed.)
Mathematical developments arising from hilbert problems (Proc.
Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974),
pp. 323–378. (loose erratum) Amer. Math. Soc., Providence, R. I., 1976

11. Diffie, W., Hellman, M.: New direction in cryptography. Trans. Inf. Theory.
22, 644–654 (1976)

12. Faugére, J.C, Spaenlehauer, P.-J.: Algebraic Cryptanalysis of the PKC’2009
Algebraic Surface Cryptosystem. In: Proceedings of PKC’10, Lecture Notes
in Comput. Sci., vol. 6056, pp. 35–52. Springer, Berlin Heidelberg, (2010)

13. Győry, K.: Solving Diophantine equations by Baker’s theory. In: A
panorama of number theory of the view from Baker’s garden (Zürich,
1999), pp. 38–72. Cambridge University Press, Cambridge, England, (2002)

14. Hindry, M., Silverman, J.H: Diophantine geometry: an introduction,
Graduate Texts in Mathematics, 201. Springer, New York (2000)

15. Hirata-Kohno, N., Pethő, A.: On a key exchange protocol based on
Diophantine equations. Infocommunications J. 16(2), 168–184 (1987)

16. Iwami, M.: A Reduction Attack on Algebraic Surface Public-Key
Cryptosystems. In: Kapur, D (ed.) ASCM 2007. LNCS, vol. 5081,
pp. 323–332. Springer, Heidelberg, (2008)

17. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
18. Lenstra, A.K, Lenstra, H.W, (ed.): The Development of the Number Field

Sieve, Lecture Notes in Mathematics, vol. 1554. Springer-Verlag, Berlin
Heidelberg (1993)

19. Lin, C.H, Chang, C.C, Lee, R.CT: A new public-key cipher system based
upon the diophantine equations. IEEE Trans. Comp. 44, 13–19 (1995)

20. Manders, K., Adleman, L.: NP-complete decision problems for binary
quadratics. J. Comput. Syst. Sci. 24, 713–735 (1970)

21. Mason, R.C: Diophantine Equations over Function Fields, London
Mathematical Society Lecture Note Series, vol. 96. Cambridge University
Press, Cambridge, England (1984)

22. Miller, V.S: Use of elliptic curves in cryptography. Abstracts for Crypto. ‘85.
Lect. Notes Comput. Sci. 218, 417–426 (1986)

23. Mochizuki, S.: Inter-universal Teichmüller Theory I: Construction of Hodge
Theaters, II: Hodge-Arakelov-theoretic Evaluation, II: Canonical Splittings
of the Log-theta-lattice, IV: Log-volume Computations and Set-theoretic
Foundations. available at http://www.kurims.kyoto-u.ac.jp/~motizuki/
papers-english.html

24. Ogura, N.: On Multivariate Public-key cryptosystems. PhD thesis, Tokyo
Metropolitan University (2012)

25. Pheidas, T.: Hilbert’s tenth problem for fields of rational functions over
finite fields. Invent. Math. 103(1), 1–8 (1991)

26. Poulakis, D., Voskos, E.: On the practical solution of genus zero
Diophantine equations. J. Symbolic Comput. 30, 573–582 (2000)

27. Rivest, R.L, Shamir, A., Adleman, L.: A method for obtaining digital
signatures and public key cryptosystems. Commun. ACM. 21, 120–126
(1987)

28. Shor, P.: Algorithms for Quantum Computation: Discrete Logarithm and
Factoring. In: Proc. 35th Annual Symposium on Foundations of Computer
Science, pp. 124–134 (1994)

29. Stothers, W. W.: Polynomial identities and hauptmoduln. Quart. J. Math.
Oxford Ser. (2). 32(127), 349–370 (1981)

arXiv:math/0512418
http://www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.html
http://www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.html

Okumura Pacific Journal of Mathematics for Industry (2015) 7:4 Page 13 of 13

30. Stroeker, R.J, Tzanakis, N.: Computing all integer solutions of a genus 1
equation. Math. Comput. 72, 1917–1933 (2003)

31. Uchiyama, S., Tokunaga, H.: On the Security of the Algebraic Surface
Public-key Cryptosystems (in Japanese). In: Proceedings of of SCIS 2007,
CD-ROM 2C1-2, (2009)

32. Voloch, F.: Breaking the Akiyama-Goto algebraic surface cryptosystem.
Arithmetic, Geometry, Cryptography and Coding Theory, CIRM meeting
(2007)

33. Weil, A.: Sur les courbes algébriques et les variétés qui s’en déduisent.
Actualités Sci. Ind., no. 1041; Publ. Inst. Math. Univ. Strasbourg 7 (1945).
Hermann, Paris, 1948. iv+85 pp.

34. Yosh, H.: The key exchange cryptosystem used with higher order
Diophantine equations. Int. J. Netw. Secur. Appl. 3, 43–50 (2011)

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Keywords

	Introduction
	Review of ASC
	Notation
	Key generation
	Encryption
	Decryption
	Construction of X(x,y,t)
	Known attacks
	Reduction to solving a multivariate equation system
	Reduction attack by Iwami MI
	Rational point attack by Voloch VF
	Ideal decomposition attack

	Our cryptosystem
	Notation
	Polynomials of degree increasing type
	Outline of our cryptosystem
	Algorithm of our cryptosystem
	Key generation
	Encryption
	Decryption
	Recovering Algorithm (RA)

	Improvement in recovering algorithm

	Security analysis
	Reduction to solving a multivariate equation system I
	Reduction to solving a multivariate equation system II
	Reduction to solving a multivariate equation system III
	Reduction by X
	Rational point attack (solving X=0)
	Solving X(x/d)dwX 0 (mod dwX+1)
	Ideal decomposition attack

	Sizes of keys and cipher polynomials
	Examples
	Conclusion
	Acknowledgements
	References

