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A property of random walks on a cycle graph
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Abstract

We analyze the Hunter vs. Rabbit game on a graph, which is a model of communication in adhoc mobile networks.
Let G be a cycle graph with N nodes. The hunter can move from a vertex to a vertex along an edge. The rabbit can
jump from any vertex to any vertex on the graph. We formalize the game using the random walk framework. The
strategy of the rabbit is formalized using a one dimensional random walk over Z. We classify strategies using the
order O(k=#~1) of their Fourier transformation. We investigate lower bounds and upper bounds of the probability
that the hunter catches the rabbit. We found a constant lower bound if 8 € (0, 1) which does not depend on the size
N of the graph. We show the order is equivalent to O(1/ log N) if 8 = 1 and a lower bound is 1/NB=1D/Bif g € (1, 2.
These results help us to choose the parameter 8 of a rabbit strategy according to the size N of the given graph. We
introduce a formalization of strategies using a random walk, theoretical estimation of bounds of a probability that the
hunter catches the rabbit, and also show computing simulation results.
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1 Introduction

We consider a game played by two players: the hunter and
the rabbit. This game is described using a graph G(V, E)
where V is a set of vertices and E is a set of edges. Both
players may use a randomized strategy. The hunter can
move from vertex to vertex along edges. The rabbit can
move to any vertex at once. The hunter’s purpose is to
catch the rabbit in as few steps as possible. On the other
hand, the rabbit considers a strategy that maximizes the
time until the hunter catch the rabbit. If the hunter moves
to a vertex that the rabbit is at, the game finishes and we
say that the hunter catches the rabbit.

The Hunter vs. Rabbit game model is used for analyz-
ing transmission procedures in mobile adhoc networks
[5,6]. This model helps to send an electronic messages effi-
ciently using mobile phones. The expected value of time
until the hunter catches the rabbit is equal to the expected
time until the recipient receives the mail. One of our goals
is to improve these procedures.

We introduce some games resembling the Hunter vs.
Rabbit game. The first one is the Princess vs. Mon-
ster game. In this game, the Monster tries to catch the
Princess in area D. The difference between the Hunter
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vs. Rabbit game is that the Monster catches the Princess
if the distance between the two players is smaller than
a chosen value. Also the Monster moves at a constant
speed whereas the Princess can move at any speed. This
game is played on a cycle graph as introduced by Isaacs
[10]. The Princess vs. Monster game has been investi-
gated by Alpern [3], Zelikin [20], and so on. Gal analyzed
the Princess-Monster game on a convex multidimensional
domain [8].

The next one is the Deterministic pursuit-evasion game.
In this game we consider a runaway hide dark spot, for
example a tunnel. Parsons innovated the search number
of a graph [16,17]. The search number of a graph is the
least number of people that are required to catch a run-
away hiding dark spot moving at any speed. LaPaugh [12]
showed that if the runaway is known not to be in edge
e at any point of time, then the runaway can not enter
edge e without being caught in the remainder of the game.
Meggido showed that the computation time of the search
number of a graph is NP-hard [14]. If an edge can be
cleared without moving along it, but it suffices to ‘look
into’ an edge from a vertex, then the minimum number
of guards needed to catch the fugitive is called the node
search number of graph [11]. The pursuit evasion prob-
lem in the plane was introduced by Suzuki and Yamashita
[19]. They gave necessary and sufficient conditions for
a simple polygon to be searchable by a single pursuer.
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Later Guibas et al. [9] presented a complete algorithm
and showed that the problem of determining the min-
imal number of pursuers needed to clear a polygonal
region with holes is NP-hard. Park et al. [15] gave three
necessary and sufficient conditions for a polygon to be
searchable and showed that there is O(#%) time algorithm
for constructing a search path for an n-sided polygon.
Efrat et al. [7] gave a polynomial time algorithm for the
problem of clearing a simple polygon with a chain of k pur-
suers when the first and last pursuer can only move on the
boundary of the polygon.

A first study of the Hunter vs. Rabbit game can be found
in [2]. The presented hunter strategy is based on random
walk on a graph and it is shown that the hunter catches
an unrestricted rabbit within O(#m?) rounds, where 7 and
m denote the number of nodes and edges, respectively.
Adler et al. showed that if the hunter chooses a good strat-
egy, the upper bound of the expected time that the hunter
catches the rabbit is O(nlog(diam(G))), where diam(G)
is a diameter of a graph G, and if the rabbit chooses a
good strategy, the lower bound of the expected time that
the hunter catches the rabbit is Q(nlog(diam(G))) [1].
Babichenko et al. showed Adler’s strategies yield a Kakeya
set consisting of 4# triangles with minimal area [4].

In this paper, we propose three assumptions for the
strategy of the rabbit. We have the general lower bound
formula for the probability that the hunter catches the rab-
bit. The strategy of the rabbit is formalized using a one
dimensional random walk over Z. We classify strategies
using the order O(k=#=1) of their Fourier transform. If
B = 1, the lower bound of a probability that the hunter
catches the rabbit is ((cy) ™! logN + )~ where ¢y and
¢« are constants defined by the given strategy. If 8 € (1, 2],
the lower bound of the probability that the hunter catches
the rabbit is caN~#~D/B where ¢4 > 0 is are constant
defined by the given strategy.

We show experimental results for three examples of the
rabbit strategy.

1. P{X; =k} = sy k€ Z\{0D)
1- 5 (k = 0)
e (k € Z\ {0))
2. P{X; =k} = ~
w=h 1-2Y dx k=0
k=1
. T o k & {—1,0,1}).

We can confirm our bounds formula, and the asymptotic
behavior of those bounds by the results of simulations.

2 Statements of results
We consider the Hunter vs Rabbit game on a cycle graph.
To explain the Hunter vs Rabbit game, we introduce
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some notation. Let X7, X5, ... be independent, identically
distributed random variables defined on a probability
space (2, F, P) taking values in the integer lattice Z. A
one-dimensional random walk {S,,}° ; is defined by

n
Su=Y_X;.
j=1

Let Y7,Y5,... be independent, identically distributed
random variables defined on a probability space
(29, Fp, Pyy) taking values in the integer lattice Z with

Py{inn| <1} =1

Let N € N be fixed. We denote by XSN) a random vari-
able defined on a probability space (Q2n, Fn, un) taking
values in Vy :=1{0,1,2,...,N — 1} with

1
o)
“N{ 0 N

For b € Z, we denote by (b mod N) the remainder of b
divided by N.

. ) .
A rabbit’s strategy [ b ] o 18 defined by
n=

(le Vn).

R(()N) = X(()N) and RN = (XéN) + S, mod N).

R;N) indicates the position of the rabbit at time # on V.
o0

Hunter’s strategy [ E,N)} . is defined by
n=

n
”HBN) =0 and HN = ZY, mod N
j=1

,SN) indicates the position of the hunter at time # on Vy.

Put
IP%[) =un x P and PN = py, XP%V).

The hunter catches the rabbit when the hunter and the
rabbit are both located on the same place.

We will discuss the probability that the hunter catches
the rabbit by time N on Vy, that is,

N
P (U {qum — Rfj“]).
n=1

We investigate the asymptotic estimate of this probability
as N — oo.

Definition 1. We define conditions (A1), (A2) and (A3)
as follows.

(A1) The random walk {S,,}52 ; is strongly aperiodic, i.e.
for each y € Z, the smallest subgroup containing the
set

[y+keZ|P{X;=k} >0}
is Z.
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(A2) P{Xi=k}=P{X;=—-k} (kel).
(A3) There exist 8 € (0,2], ¢, > 0and & > 0 such that

$0) ==Y P =k} =1-cl0)f +0(l0F).

keZ

We denote the 8 in (A3) as Br.

Theorem 1. Assume that X; satisfies (A1) — (A3).

(I) If Br € (0, 1), then there exists a constant ¢; > 0
such that for N € N\ {1} and y1,¥3,...,yn € Z with
Vo — Yut1l <1 (m=12,...,N —1),

N
¢ < P (U [RY = 0 modN>}>. (1)

n=1

() If Br = 1, then there exist constants ¢y > 0 and
¢z > O such that for N € N\ {1} and y1, 59, . ..,

N
: < P (U {RIY = mod N)})

71 <
o logN + ¢ et
c3
. 2
< Toow 2)
(IM) If Br € (1,2], then there exists a constant ¢4 > 0
such that for N € N\ {1} and y1,y3,...,yn € Z with

|yn_yn+1| = 1(1/121,2,,]\[—1),

N
C4
N7 < PR (U [RY = s mod N)}) )

n=1

The following bounds are obtained as a corollary of
Theorem 1.

Corollary 1. Assume (A1) — (A3).
If Bz € (0, 1), then there exists a constant ¢; > 0 such
that for N € N\ {1},

N
¢ < P (U{'Hfj\” = Rﬁj\“}) :

n=1
If Bg = 1, then there exist constants ¢c; > Oand ¢z > 0
such that for N € N\ {1},

o (e )
n=1

1
o7 logN + ¢
< 8
~ logN
If Bz € (1,2], then there exists a constant ¢4 > 0 such
that for N € N\ {1},

N
C4 5N N N
NG-D/B =P )<U [H’(f =R, )}>

n=1

(4)
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Remark 1. Adler, Ricke, Sivadasan, Sohler and Vocking
considered P (Uﬁle [’Hﬁ,N) = R;N)D in the case of

1
P{Xi =kl = %(Ikl + D(Jk| +2)

In this case, X satisfies (A1), (A2) and

(k € Z\{0})

$O) =1— %|e|+0(|9|3/2>

((A3) with B = 1), and we have (4) in Corollary 1 which
coincides with the result of Lemma 3 in [1].

Remark 2. For 8 € (0, 2), let

1
P{X; =k} 24k rem
1=kp= s 1
1—;Z—kﬂ+l (k =0)

k=1

with a constant a satisfying a > Y o (1/k#*1). Then
$(0) in (A3) is

$(0) = 1—— 1017
T 2aT(B+1)sin(Br/2)

+0 (|9 |ﬂ+(27ﬁ)/2) ,

(5)

where I' is the gamma function (see Appendix (B)). X;
satisfies (A1), (A2) and (5).

If X; takes three values —1,0,1 with equal probability,
then X satisfies (A1), (A2) and

Lo 4
¢(0) =1— 161"+ OO
((A3) with 8 = 2).
The inequality (3) seems to be sharp, because the pow-

ers of upper and lower bound appearing in (3) cannot be
improved. Indeed, we have the following estimates.

Proposition 1. Let ”HEN) = 0 for any i and assume
(A1) — (A3). If Br € (1,2], then there exist constants
¢s5, ¢ > 0 such that for N € N,

N
C5 (N) { ) _ } C6
N#-D7F = PR <U1 Ry =01 ) = X178
n=
(6)
Proposition 2. Let ”HL(N) = i for any i. If X takes three

values —1,0, 1 with equal probability, then there exists a
constant ¢; > 0 such that for N € N,

N
c7 < IP’%V) (U {’R;N) = (n mod N)}) . (7)

n=1
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The proofs of Proposition 1 and Proposition 2 are given
in Appendix (A).

Remark 3. Assume (A1) and (A2). If there exist ¢, > 0
and & > 0 such that

$0) =1—c, 0|+ 0 (10]'F)
((A3) with 8 = 1). Then

N
. 1 ) ™) _ _
(o) (O o) o

* n=1

The proof of (8) is given in Appendix (C).

3 Computer simulation
In this section, we show some experimental results about
the Hunter vs Rabbit game on a cycle graph. We compute
P{S, mod N = k} by using the gamma function and the
class discrete distribution in C++. We can show
the probability the rabbit is caught and the expected value
of the time until the rabbit is caught using this application.

In this section, we consider a lower bound L(N, a) of the
probability that the hunter catches the rabbit. According
to the Proposition 3 and Proposition 6, we define L(N, a)
as follows:

1

L(N) = -
1+Anx+Bn + T—ps
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We note f and c, are defined by a given P{X; = k} in an
example. We choose appropriate constants ¢, p, and C,
for each examples.

Example 1. We consider the generalization of the case
of [1]. Let
1
P, =k = | 260K + DRI +2)

1— —
2a

(k e Z\{0})

(k=0)

where a > %.We note 8 = 1,¢, = wande = 1/2in
Remark 1. If a = 1, then this is the case in [1].
We can define C, and p, for this case. So we have

1

1
— o = LIN, D = .
5 logN + 7.45574

i e

The proof of (9) is given in Appendix (D).

Figure 1 shows an experimental result of the probabili-
ties for all initial positions of the rabbit with N = 100 and
a = 1. The horizontal axis is the initial position of the rab-
bit, and the vertical axis shows the probability the rabbit is
caught. The red line in the figure is a probability that the
hunter catches the rabbit. The blue line is the average of
probabilities that the hunter catches the rabbit. The green
line is L(N, a). In this case, the hunter does not move from

)

where
Yrre—prepC, the 1mt.1;‘il position 0. As you can see, the average of the
v=l T (B € (0,1]), probability that the hunter catches the rabbit is bounded
oNB-D/B (B € (1,2) below by L(N, a).
In this case, the average of the probability that the
and . s o .
S8 hunter catches the rabbit each initial position of the rabbit
Fer-p) (B € (0,1)), nearly equals 0.4258, so we have
By = nic*logN+ nlc* B =1),
24 1\ N(B-D/B ————— =8.3889%4,
(1 )N (B € (1,2)). L(100,1)
The probability of that the Rabbit is caught
1 T T T T
a probability that the Rabbit is caught ——
g L.2)
% 0.8 L the average of the probability —— i
g
T 06 B A
@ \-\‘ P
g_ 0.4 > NN ,777\;/ e A WA/ VYV =
]
& o2l .
(o]
£
0 1 1 1 1
0 20 40 60 80 100
a first position of the Rabbit
Figure 1 This is an experimental result of Example 1. In this case, a = 1. The hunter does not move from an initial position 0.
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and

N
1 N) '
TR (U [R = o}) 31672
’ n=1

Table 1 is the experimental results of Example 1 with
a = 1and N = 100,500 and 1000. This table shows the
asymptotic behavior of (8).

Example 2. We consider the case of 8 € (0,2). We put

1

2alk|f+1
P{X; =k} = 11

1— ;Zﬁm (k =0)

(k € Z\{0})

wherea> Y 72, kﬂ—lﬂ. By Remark 2, ¢x = 5.r51)smpn )
and ¢ = # Then, the lower bound of the probability
that the hunter catches the rabbit L(N, a) is

L(N,a)
1
1-8 B — — -
L s + 2432013261 CL + (1= po) !
(B €(0,1)

B=1

1+ 2NB-D/B 22-B (1+(g—1)~"1)NB-D/P

certP

+ (1—ps)~ 1
(B €(1,2)
where p, and C, are appropriate constants for each exam-

ples. When a = 2.5 and 8 = 1, we set C,, = 0.177245 and
P+ = 0.694811. So we have

1

L(N,25) = — .
2 log N + 4.65936

Figure 2 is an experimental result with 8 = 1, N = 100
and a = 2.5. In this case, the average of the probability
that the hunter catches the rabbit nearly equals 0.318, so

we have
1
——— =6.99237,
L(100,2.5)

Table 1 This table is experimental results of Example 1
witha = 1and N = 100,500 and 1000

N 1/L(N, @) A AJL(N, a)
100 8.38894 04258 3.57201
500 8.71508 039048 340307
1000 8.85554 037555 33257

A is the average of the probability that the hunter catches the rabbit.
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and

N
1
mpg) (U {RZN) = 0}) = 2.22357.
’ n=1

Table 2 is the experimental results of Example 2 with
B =1,a = 25and N = 100,500 and 1000. This table
shows that the value of A/L(N, a)(> 1) is decreasing.

Example 3. We put

(k ¢ {—1,0,1}).
By Remark 2, 8 = 2, ¢, = % and ¢ = 2. In this case,

the lower bound of the probability the hunter catches the
rabbit L' (N) is

1
P{Xt=k}={3
0

1
(1 T %) NV/2 4 4.26301

L'(N) =

(We can prove this using in the same way in Appendix
(D).) Figure 3 is an experimental result of Example 3. The
green line in Fig. 3 is L'(N).

We could have a concrete lower bound of the average of
a probability that the hunter catches the rabbit for those
examples.

4 Upper bounds and lower bounds
In this section, we give a relation between

Py (C) [RY = ¢ mod N)})

n=1

and one-dimensional random walk {S,,}7 ;

Proposition 3. For N € N\ {1} and y1, 3, ...
with |y, — Y41l <1(m=1,2,...,N—1),

N
1p(N) < IP’(N) (U {RE,N) = (y, mod N)})

,yNGZ

i= 0 n=1
2
(10)
N—1_(N)’
Zl 0 qz(
where
[yIn={y+kN |k € Z},
w _ |t (i=0)
Pi =) max P{Sielyly} (€N
ly|<i, yeZ
and
q; = min P{Sl y]N} (i e N).
ly|<i, yeZ
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The probability of that the Rabbit is caught
1
I l a probalbility that the RabbitI is caught ——
E L(N.’.a)
ga 0.8 |- the average of the probability —— |
|
T 06l [
g )
N\ /
g M N ]
ﬁ ™\ A \/_/'\/ <
S MV A AN Y
8 02F .
Q
¥
0 1 1 1 1
0 20 40 60 80 100
a first position of the Rabbit
Figure 2 This is an experimental result of Example 2. In this case, a = 2.5. The hunter does not move from an initial position 0.
Proof. We note that P{l+ S, €[ynIn}
N n [+ Si ¢lyiln, l<i<j-1,
= Pl 1+S =y +mN
U{RY = mod )] 22 j = YT
4 j=1 meZ yj+mN + X+ -+ Xy €lyuln
n=
-1 N
=l U XY =1 145, elyaly e . .
0 ’ n n The probability in the double summation on the right-
[=0 n=1 hand side above is equal to
-1 N N
_ U{x(g):z, l+Sne[yn]N,}
. . < i< —
v [+S;ié¢lyiln, 1<i<n-—1

oo
by the definition of {R;N)] K By IP’%[) = un X P, the
n=

above relation implies

N
P (U {Rf}” = (y, mod N)})
1

N1 {l+5i¢[yi]N,1§i§n—l,}
E —P .
N | I+S, elyaln

(11)

Forl e {0,1,...,N—1}andn € {2,3,...,N}, we decom-
pose the event {{ + S,, €[y,]n } according to the value of
the first hitting time for [y1]n, [¥2]n - [Vu]ln and the
hitting place to obtain

Table 2 This table is experimental results of Example 2
with 8 =1,a =2.5and N = 100,500 and 1000

N 1/L(N, @) A AJL(N, a)
100 6.99237 0318 222357
500 7.80772 0.25924 202407
1000 8.15887 0.24015 195935

A is the average of the probability that the hunter catches the rabbit.

p I+S; ¢lyiln,

xP {yj +mN + Su—; €[yuln }

1§i§j—1,}

by the Markov property. It is easy to verify that for any
meZ,

P{yj+mN + S,_j €lyuln }
=P{Suj€lyn—yin} =< ng

by |y — yj| < n — j. Therefore

P{l+ S, €lynln }

n
[+ Si ¢lyiln, lfiij—l,} )
<3P )
_I,ZZI {H—S/’ =lyln P

(12)

for/ € {0,1,...,N — 1} and n € {1,2,...,N}. By multi-
plying (12) by 1/N and summing (/, n) over {0,1,...,N —
1} x {1,2,...,N}, we have
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1 T T

The probability of that the Rabbit is caught

0.8 -\

06 \

the probability that the rabbit is caught

T T
a probability that the Rabbit is caught ——
L(N) |
the average of the probability ——/

0 i 1

1 et

0 20 40

a first position of the Rabbit

Figure 3 This is an experimental result of Example 3. The hunter does not move from an initial position 0.

60 80 100

P{l+ Sy €lynln }

M=
= z|-

1 |1+ ¢lyiln, lfifj—l,}
< —p
_Z;N {Z+S;=[yj]N

N N—1
<Py’ (U {RM = G modN)})( “”) (13)

n=1

Here we used (11).
By YN IS, €lyln} = PiSy € Z}=1(n e N,y € 7),

N-1 N

ZZ —P{l+ S, €lyln} = L.

(13) and (14) imply

N
1 <P (U {Rfj\” — (y, mod N)}) (Zp(N)>
n=1

(15)

(14)

that is the first inequality in (10).
For the last inequality in (10), let yy4; = ynv (G =
1,2,...,N). The same argument as showing (15) (we use
N 1 ctead of 5™ g
gq; "’ instead of p;") gives

N-1 2N 1
2= DU+ Su €lynln)

= fb (R = 5 mod N)]) <Zq<m)

n=1

)
PR

v

O

Corollary 2. For N € N\ {1},

1 <P C[J{R(N):O}
'Psieloly) — % "

n=1
2

'p(s; e

1+ 3N

16
1+Z (16

Proof Put y; = y = --- = yon = O in the proof of
Proposition 3. Then the same argument as showing (10)
gives (16). O

[Oln}

Corollary 3. For N € N\ {1},

1
1+ 3N Pis; eliln )
N
<P (U [RgN) = mod N)})
n=1
2
< N1 —. (17)
145 PSi eliln}
Proof. Puty; =j(j =1,2,...,2N) in the proof of Propo-
sition 3. Then the same argument as showing (10) gives
(17). O

Remark 4. By the same argument as showing (16), we
obtain that for € > 0 and N > 1/¢,

1+¢€
1+Z 1 PLS; e[O]N}

P (Cj [0 0])

n=1

5 Fourier transform
In this section, we introduce some results concerning one-
dimensional random walk.
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Proposition 4. If a one-dimensional random walk sat-
isfies (A1) and (A3), then there exist C; > 0 and N; € N
such that for n > Nj,

1 [t /
sup |nV/PP(S, =1} — — / e’ exp (—if) dx
7. 27 J_oo nl/p

=< C1n761

where § = min{e/(28),1/2}.

Proof. Proposition 4 can be proved by the same proce-
dure as in Theorem 1.2.1 of [13].
The Fourier inversion formula for ¢"(0) is

1/8 T .
W Bpis, =0 =" [ ¢"6)e " dp.

) (18)

By (A3), there exist Cx > 0 and r € (0, ) such that for
0] <r,
6©0) — (1 —cul61P) | < Cul6)F (19)
and

@) <1— %*wvﬁ. (20)

With r, we decompose the right-hand side of (18) to obtain

nBpP(S, =1} = I(n, 1) + J(n, 1),

where
1/p ,
Il =2~ ¢"©)e ! do,
2 Jig|<r
1/p .
Jnl) = ¢"(0)e " do.
21 Jr<ioi<n

A strongly aperiodic random walk (A1) has the prop-
erty that |¢(0)] = 1 only when 0 is a multiple of 27
(see § 7 Proposition 8 of [18]). By the definition of ¢(6),
|¢(0)] is a continuous function on the bounded closed set
[—m,—r]U[r ], and |¢ (@) < 1 (@ €[ —m,x]). Hence,
there exists a p < 1, depending on r € (0, ], such that

max |¢(0)| < p.

(21)
r<|f|<w
By using the above inequality,

1/8

n
Dl < = — 1p©)|" do < n'/Pp".

r<|f|<w

We perform the change of variables § = x/n'/?, so that

1 u( % Cxl
I(n,]) = - /{kaw ¢ <W) exp (_lrzl/ﬁ> dx.

Put

y=min{ ¢ s 1 }
26(8+¢e+1) 228+1)
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We decompose I(n, ) as follows:

1 [*o {
I(nl) = ﬂ/ gl exp (—injf/ﬂ> dx
—00

+h (I’l, l) + 12(”1’ l) + I3(n, l),

where

l
X exp (—ir;c/ﬁ> dx,

1 /
Lnl) = —— el exp <—inx> dx

T Jnr <|x|

and

1 x xl
L(n)=— " —i—— ) dx.
3000 27 ./nV<|x|<m1/ﬂ¢ (nl/ﬁ) eXp( lnl/ﬁ> *

Therefore,
1 o 8 xl
1/8 — —cxl| ;
n P{Sn_l}_Zn/ e~ ¥ exp(—znl/ﬁ> dx

—0Q

3
<UD+ Y k(n D).
k=1

The proof of Proposition 4 will be complete if we show
that each term in the right-hand side of the above inequal-
ity is bounded by a constant (independent of /) multiple of

)
n°.

If n is large enough, then the bound |J(n,1)| < n'/#p",
which has already been shown above, yields

Jon D] < n™.
With the help of

n—1
ja" —b"| = la—b||> a" T
j=0

<mnla—>b| (abe[-1,1]) (22)

and |¢(0)| < 1 (0 €[ —n,7]), (19) implies that for |x| <

n( % \_ ’ L) _ pcalxlP /n
¢ (nl/ﬂ) =n ¢(,,1/ﬁ ¢
x |x|B
¢ () - (1 ‘C*n>
<1 _ C*W> _ e’ /n
n

2
< C*|x|/3+£n—8/,3 + S |x|2ﬂn_1.

e—cxll?

<n

+n

2
Thus
1 x el
LD < — (—)— el | gg
[i(m D) = 27 e ¢ nl/B
< 1 ( Cx + c )ns'
T \B+e+1l 202B8+1)
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It is easy to verify that for |x| < rnl/P,
p X Cy |7c|)8 g —cs|x|B /2
o (orm)| < (1‘“) =¢
by (20), and we obtain that
1
E n? <|x|<rnt/p

" (m)|
1

< — e /2 gy
278 Juy <)

[I3(n, )]

IA

(23)

Moreover, if 7 is large enough, then

e P2 < iy x|—S/3
*

where s = (1/8)(1 + 1/(2y)). By replacing the integrand
in the right-hand side of the last inequality of (23) with the

right-hand side of the above inequality, we obtain

(x| > n”),

2s+1 25+l
B30 D] = =Ln 12 < =Ly, (24)
el TS,
The same argument as showing (24) gives
1 2s+1
[2(n, D] < —/ el gy < 2V,
2 nv <|6| TTCE,
O

Let

1 +o00 gl xl
. — —Cx|x] 7
Io(n,1: B,cy) = 27r/, e exp( l,ﬂ/ﬂ) dx

appearing in Proposition 4.

Remark 5. When a one-dimensional random walk
is the strongly aperiodic (A1) with E[X;]= 0 and
E [|X1 |2+‘9] < oo for some ¢ € (0, 1), it is verified that

E[X?
$0)=1- %W +0(161**).

In this case, Iy(n, [ : 2, E [Xlz] /2) can be computed and
Proposition 4 gives the following. ~
y (Local Central Limit Tlleorem) There exist C; > 0and
N; € N such that for n > N,

1 IS
1/2 _
sup |n/“P{S, = I} — ———=exp (—)
leZ /ZE[XIZ]JT 2E[X12]V1
< 6'1}'1_(S
(25)

where § = min{e/4,1/2}. (See Remark after Proposition
7.9 in [18].)

It is easy to see
Cx

1
I()(Vl,l: l,C*) = ;W

meN,leZ,c, >0)
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and we have the following corollary of Proposition 4.

Corollary 4. If a one-dimensional random walk satisfies
(A1) and (A3) with B8 = 1, then there exist C; > 0 and
N; € N such that for n > N,
=< C2n75)

sup |nP{S, =1} — Cx

1
leZ, w2+ (I/n)?

where § = min{e/2,1/2}.

We perform the change of variables t = c,x? , so that

1 [t 1 1
In(n,0: B,cy) = ;/(; e gy = p 1//3 ——T (ﬁ) .
Cx

With the help of the above calculation, Proposition 4
gives the following corollary.

Corollary 5. If a one-dimensional random walk satisfies
(A1) and (A3), then there exist C3 > 0 and N3 € N such

that for n > N3,
1 r 1
ﬁcl/ﬂ B

where § = min{e/28,1/2}.

n/Bp(s, =0} — < Can~?,

Proposition 5. If a one-dimensional random walk sat-
isfies (A2), thenfor/ € Z and n € {0} UN,

P{S, ell]ln'}

1 2 jm
:N_f_ﬁ Z " (N)cos( )-I-JN(VI,Z)»

1<j<(N—1)/2
(26)
where

(1/N)¢" () cos(rl) (if N iseven)

In(n, D) = { 0 (if N isodd).

Proof. By the definition of ¢ (0),
> e p(s, =ki.

keZ

P"(0) =

Thus

2 .
o(3)-pes

keZ

Z 2 (+mN)/N p {sn —I+ mN}
me

Z

~1

2
Lo

_ 3" 2N |s ellln }

=0
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Then,
N-1 ) N—-1N-1
e*Zijnl/N(pn ( ]7T> Z Z eZL/n(l H/Np [S G[l] }
j=0 j=0 /=0

= NP{S, €[l]n}

since
N-1 ~
Q2im(=D/N _ { N =1 '
= 0 1#£1
Therefore,
N-1
1 2w\ i
PIS - n <" 2jmil/N
{Sn €llln} N ¢(N>e
j=0
N-1 . .
= 1 " I cos l
N N N )’

(=}

j=
We note that ¢"(0) € R and

N-1 . .

1 2 2jml
15y (ﬂf) os (/ﬂ) <R
N N N

by (A2). So we have

" (2mn> <2mnl>
¢ cos
N N

— (2(N - m)n) cos (Z(N - m)nl) @)
N N

Let N be an even number. Then, by (27),
P{S, €[lln}
= i‘f’n 0) 0)
=5 cos
2 2jm 2jml
2o (F)e ()
1<j<(N-1)/2
+— qS” () cos (7 l)
1 2 e nl
N+N Z ¢<N>COS(N
15j<(N—1)/2

—|—]%]¢>" () cos ().

Therefore, we have (26) for every even number N. The
proof of (26) for odd number is similar and is omitted. [

6 Proof of Theorem 1
In this section we prove Theorem 1. To prove it, we
introduce the following Proposition.

Proposition 6. Assume (A1), (A2) and (A3).

Page 10 of 14

If B € (0,1), then there exists a constant cg > 0 such
that
N-1

N
Yo <
i=0

If ,B = 1, then there exists a constant ¢ > 0 such that

w _ 1
ZP Ty

If B € (1,2], then there exists a constant c;9p > 0 such
that
N-1
35 < N/,
i=0

(28)

(29)

(30)

Proof. There exist C, and r € (0, ) such thatfor |6| < r,

l¢(0) — (1 — cl01P) | < CilOIPFe (31)
by (A3). We can choose r, € (0, r] small enough so that
1 1
Cyrs < —cyand c*rf < -. (32)
2 3
Then for |0| < 7,
1
Sel01P < 11— (33)
and
3 1
1—¢0)] < 2cil0f < =. 34
| <15()|_2c*||_2 (34)
There exists a p, €[0, 1), depending on r, such that
max [p(0)] < p« (35)
r«<|0]|<w

by the same reason as (21). (Here we used the condition
(A1).)
Using Proposition 5 and (35), we obtain that for i €

{1,2,. — 1},
,,;N> = maxP (i €llly ]
<i
1 2 j
<= =l (5 0
<5+ Z N‘¢<N) + Un G, 0)
1<j<(N—1)/2
1 2 jr
< - -
=5 W)+
1<l<(r*/(2ﬂ))N
Therefore
N-1
> pY <l+oy+ 7 (36)
i - 10*
i=0
where
N
2
2 1[0 (%F)]
Oy = =L

>
15i<Goemn N 11— ‘¢ (%)’
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Because of (A2), ¢(0) takes a real number. Then (33),
(34) and (A1) mean that

1
7= PO) =10 <1 (0 € (—r,0)U(O,r) (37)

and
2 1
on = 2 N, _ (%)
1<j<re/@oN " 1= (5

We will calculate ®p in the case 8 € (0, 1]. By (38), we
decompose the right-hand side of the above to obtain

(38)

2 1 s
Y S =dy+En (39)
N 2jn
1<j<(re/@o)N - 1 — @ (ﬁ)
where
- 21-8
Iy = NP1 P,
N= The, ‘ Z J
1<j<(r/@r)N
2 1 1

Exn= > =

1<j<(r«/(2m))N

U\ T\ B
=0 (%) (%)
To estimate Ex, we use (31) and (33) which imply that
forj €[ 1, (r«/(27))N) N Z,

RO

where ¢1; = 22“'8_5715_5@(/&. By noticing that 1 + ¢ —
B >0,

N
E joP 5/ P A= ———.
0 1+e-p8

1<j<(r«/(2m))N
Thus
|En| < c11/(Q +¢& — B).

It is easy to see that

5 21—/3 N
oy 5 NP1 <1+/ x P dx>
TP Cx 1

21-B
_ 0,1
nfc*(l -8 ) #e@Db) (41)

logN + B=1).

IA

IA

TTCy

Put the pieces ((36), (38)-(41)) together, we have (28) and
(29).
In the case 8 € (1, 2], we use (37) to obtain

oy < Y + DY,

TTCy

(42)
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where N(8) = min {N¥=V/ (r,/(27))N} and
i N
oV = Y 2‘1_¢<211\[) ‘
= ’1 —¢ (%)‘

2 1
o) = >

N 2jr
N(B)=j<(r+/(2m)N ‘1 —¢ (%)

We use (22) (setn =Nanda=1,b=¢ (%)), then

oy <2N(p) < 2NP-V/P,
We notice that 8 — 1 > 0, (33) gives

NB-1 Z }'—/3

N(B)=j<(rs/(2m)N

(43)

2—B

@ _ 2
(0] < —
N = 7B

22—/3 +00
FNP (N/3+1 +/ x P dx)
NB-1/B
2-p
P PO SN
= b -1

Put the pieces ((36), (42)-(44)) together, we have (30).
O

<
CyTT

(44)

It remains to show the last inequality in (2). To achieve
this, we will use Proposition 3 and Corollary 4.

There exist Cy > 0 and N5 € N such that for i > Ny and
leZ,

Cx 1

1
PiSi=l)> ———— —— —Cy 7}
{5 }_nc§+(l/i)2i 2
by Corollary 4. Let
o0
Cc12 = — G lOgN2 + Cy Z i_l_a.
Tc2+1 fared

We can choose N, € N large enough so that
11 ¢,
2w 2 +1

Then for N > N, + 1,

N-1
@)
>4
i=0

log N > ci1a.

v

N-1

> minP(S; =1}
[|<i

i=N-

1 c N—l1 oo
* —1-6
— -—-C i
DI
nc*—l—ll,:]\bl =,
c
2* OgN—Cu
wer+1
11 ¢,
————1logN 45
2w c2+1 & (45)

It follows from Proposition 3 and (45) that for N €[ N, +
1,+oc0)NNand y1,¥2, .. .,yNn € Zwith |y,—yuy1| <1 (n =
1,2,...,N—1),
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log N

N an(@+1)
]P’%V)<U{R£IN):@,, modN)})f &

It is clear that IP’%\[) (U]nvzl {R,SN) = (y, mod N)}) is

bounded by 1. Put c3 = max {471(c£ +1)/cs logN*}. The
last inequality in (2) holds.
The proof of Theorem 1 is complete.

7 Conclusion and future works

We formalized the Hunter vs Rabbit game using the ran-
dom walk framework. We generalize a probability distri-
bution of the rabbit’s strategy using four assumptions. We
have the general lower bound formula of a probability
that the rabbit is caught. Let P{X; = k} = O(k—#~1). If
B € (0,1), the lower bound of a probability that the hunter
catches the rabbit is ¢c; where ¢; > Oisaconstant. If 8 = 1,

the lower bound of a probability that the rabbit is caught

is W where ¢y and ¢, are constants defined by the

given strategy. If 8 € (1, 2], the lower bound of a proba-
bility that the rabbit is caught is W where ¢4 > Ois a
constant defined by the given strategy.

We show experimental results for three examples of the
rabbit strategies. We can confirm our bounds formula,
and asymptotic behavior of those bounds

N
o) (0

an (o Ul o) -

In this paper, we consider the lower bound of a proba-
bility that the rabbit is caught to show the worst expected
value of time until the rabbit caught. Our motivation is to
find the best strategy of the rabbit. Our results help to find
the best strategy of the rabbit. On the other hands, what
is the best strategy of the hunter? And what is the worst
strategy of the hunter? Future works include to show the
best strategy of the hunter is ¥j;1 = ¥; + 1, and the worst

'H(N) for any ;.

strategy of the hunter is Y;

Appendix

A Proof of Proposition 1

The first inequality in (6) comes from (3) in Theorem 1.
To prove the last inequality in (6), we will use Corollary 2
and 5 instead of Proposition 3 and Corollary 4. The same
argument as showing the last inequality in (3) gives the
last inequality in (6). O

B Proof of Proposition 2

We consider the case when X; takes three values —1,0, 1
with equal probability. In this case, X; satisfies (A1), (42)
and

60) =1- 0P +0(01%).
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We can shgw that there exist C; > 0 and N; € N such
thatfori > Njand ! € Z,

1 302

=l < V3 + Ci!
2w 2 P\ T

by (25). We notice that P{|X;| < 1} = 1, then we obtain

that for N € N\ {1},

N-1

1+ Y PS; elily)

i=1

P{S; = (46)

N-1

=1+ > PSi=i+ Y.

i=1 N/2<i<N—1

P({S;=i— N}

and
N-1
1 1
ZP{SZ =ij=)_ () <5
i=1
With the help of e™ < 1/x (x > 0), (46) implies that for
N > 2Ny,

> PiS=k-N}

N/2<k<N-1

V3 o1 3k—N)2\ .
=< Z {Mwexp(—M)+C1k 1

N/2<k<N—1
3k2 - 2
22 V\ac § z
eXp( 4N>+ ! N

V N1/2

1<k<N/2 1<k<N/2
3 1 4N ~
S Eravied DR D Dl Eel
1<k<N1/2 NV2<k

2 —+00 1 -
‘/_NW( +/ = dx> +2G
4/ N N2 X
S €13,

where ¢13 = /3/(27) + 4v/2//37 + 2C;. Thus for N €
N\ {1},

1+ ZP{SL

Combining the above inequality with Corollary 3, we
have (7). O
(B) To obtain (5), we use the formula
JTba71

/*‘” sin bx
dx = -
0 x% 20N () sin(a/2)

for @ € (0,2) and b > 0. By the definition of X7,

N} =< max{ZNl, (3/2) + c13}.

(47)

1 & 1
1-©) = > (1 - cos 101) -

k=1
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A simple calculation shows that the absolute value of the
difference between the right-hand side of the above and

1 /*oo 1 —cos|f|x
0

a xB+1

dx

is bounded by a constant multiple of |0|F+@=P)/2 1t
remains to show that

1 /+°° 1 —cos|6x T 6|8
0

p A T uTB + Dsin(Br/2)
(48)

a

We perform integration by part for the left-hand side of
(48) and use (47). Then we have (48) and (5).

C Proof of (8)
Let € > 0 be fixed. By Corollary 4, there exist C; > 0 and
N5 € N such that for i > N,

P{S; = 0} > 1 % — Cpi 179, (49)
(49) implies that for N > (4/¢)(Ny + 1),
1+ Y PSielOlv}= ) P{Si=0)

1<i<(e/4)N Ny<i<(e/4)N

> 2 _ il
- Z (c*n i 2 >

Na<i<(e/4)N

1 (/4N 1 1 +o0
> / —dx — Cy s + /
C«TT JN, X NZ Ny
1 1

CyTT

logN +

loge — c14,
C4TT

where ¢y = (1/(cym))logd + (1/(csm))logNy +
Co {1/N* 4 1/60ND) |
We can choose Ny € N which satisfies

min{l,e} 1 logNy > |— 1 log e + c1a (51)
2 8 CyTT - CyTT
and

e 1

Ec*n log Ny > ¢y, (52)

where ¢, is the same constant in (2).
Combining Remark 5 with (50) and using the left-hand
side of (2), we obtain that for N > max{Ny, (4/€)(Na+1)},

L o e
C%ﬂlogN—i—czEPR (U{R” _0}

n=1

1+ (e/4)
=1 1 :
o7 logN + —loge —ca
Hence for N > max{Ny, (4/€¢)(N> + 1)},

N
(C*ln logN) P (U [RM = 0}) ~1

n=1
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<EQ +EY,

where
1
N — 1 los N -
or ogN + ¢
and
1
N — |1 1 :
o7 logN + - loge —c1a

The proof is complete if we show that for
N > max{Ny, (4/€)(N2 + 1)},

EY +EQ <e. (53)

We use (52), then
(%]

(1)
ED < 2
N 1
(2*7 IOgN

IA

€
4
for N > max{Na, (4/€)(Ny + 1)}. We can show that

(e/4)$tlogN+ ’—C%ﬂloge +c14’

@
EN

CxTT

1 1
o logN — ‘——loge + 014‘

< -+ <
2 (1/2)@%{ logN 4

_C*Lnloge + c14’ - 3¢

for N > max {Na, (4/€)(N3 + 1)} by (51). The above two
inequalities yield (53). O

D Proof of (9)

We show the lower bound of Example 1. In this case, a =

LB=1ci=7,ande = % We have |En| = 2¢11 by (40).
We note

22+£—ﬂns—ﬂc*

c11 = = 27/27'[75/2C*.

ct

We can choose C, = 1.225 by (31). So we have
|En| < c11/(1 + ¢ — B) = 1.58452.

We have

~ 2 1 2

Py < — ogN + =

by (41). So we can show that

N-1
S PN <1+ @y + |Enl +
i=0 1=p.

<1+ 2 0gN+ 2 158452 +
—= 10 s .
- 2 & 72 1-—

Px
by (36), (38) and (39). So we have
1 - 1
N-1_ _(N) = 2 2 1
YN PN T 1+ B logN + 5 + 158452 + -
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by Proposition 3. It is easily to check r, = 0.212207 (by
(32)) and max;,, <jg|<x ¢ (8)| < 0.785802, then we set p,, =
0.785802. Then,

1 1
> .
YNEP™ T ZlogN + 7.45574
So we have (9). O
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