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Abstract

Microbial growth curves, recording the four-phases (lag, growth, stationary, decay) of the dynamics of the surviving
microbes, are regularly used to support decision-making in a wide variety of health related activities including food
safety and pharmaceutical manufacture. Often, the decision-making reduces to a simple comparison of some
particular feature of the four-phases, such as the time at which the number of surviving microbes reaches a maximum.
Consequently, in order to obtain accurate estimates of such features, the first step is the determination, from
experimental measurements, of a quantitative characterization (model) of the four-phases of the growth-decay
dynamics involved, which is then used to determine the values of the features. The multiplicative model proposed by
Peleg and colleagues is ideal for such purposes as it only involves four parameters which can be interpreted
biologically. For the determination of the four parameters in this multiplicative model from observational data, an
iterative two-stage linear least squares algorithm is proposed in this paper. Its robustness, which is essential to support
successful comparative assessment, is assessed using synthetic data and validated using experimental data. In addition,
for themultiplicativemodel, an analytic formula is derived for estimating the average lifetimes of the survivingmicrobes.

1 Introduction
For microbial growth considerations in areas as diverse
as food contamination and pharmaceutical manufacture,
the key data are the four-phases (lag, growth, stationary,
decay) of the growth dynamics of the surviving microbes
[7, 8]. For the utilization of such data for compara-
tive assessment, monitoring and predictive purposes, an
appropriate model is required which accurately tracks the
four phases [8]. Depending on the situation under consid-
eration, such a model can be utilized in various ways. In
food contamination situations, it can be used to compare
different inactivation (heating) strategies in food process-
ing or to comparatively assess the survival characteristics
of different classes of microbes. In pharmaceutical sit-
uations, it can be used to predict the optimal time to
harvest the surviving microbes, since it is only the surviv-
ingmicrobes that can be used tomake the pharmaceutical.
In the study of soil microbes, comparative assessment has
been used to compare the chemical and physical factors
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which influence the relative levels of microbial carbon and
nitrogen biomasses [10].
For modelling and tracking the changing features of the

four-phases, Peleg and colleagues [8, 9] have proposed and
analysed a multiplicative model consisting of the product
of two Kohlrausch (stretched exponential) functions [2, 7]
with positive and negative exponential growth

N(t) = N0 exp
[(

t
tcg

)m1]
exp

[
−

(
t
tcd

)m2]
, (1)

where the parameters tcg and tcd represent the charac-
teristic times for the growth and the decay, respectively,
(had they been unimpeded) and the exponents m1 and
m2 characterize the nature of the exponential growth and
decay. Such a model, after the initial growth from a start-
ing population of N0, allows for a subsequent decrease in
the size of the population, as occurs for the survivors in a
closed environment [7, 8]. On setting m1 = β , m2 = b,
α = (

1/tcg
)m1 and a = (1/tcd)m2 , Eq. (1) takes the more

compact form

N(t) = N0 exp
(
αtβ

)
exp

(
−atb

)
, (2)
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which models an initial growth (by having α > a) which
is eventually dominated by the decay (by having b > β).
It is easier to describe the algorithm using this equation.

Once the parameters a, b, α and β have been determined,
one can then use the above relationships to determine
m1, m2, tcg and tcd. These relationships are discussed
from a biological interpretative perspective in subsec-
tions 2.3 and 2.4.
As explained in Edwards et al. [7], the importance of

this model is that it is the solution of a non-autonomous
ordinary differential equation which is able to track
the four-phases. It therefore circumvents the shortcom-
ings associated with models which are the solutions of
autonomous ordinary differential equation, such as the
Verhulst, since their solutions can only model the first,
second and third phases, but not the fourth.
To determine the parameters in fitting the multiplica-

tive model to observational survival data, Peleg and
Corradini [8] suggest the use of mathematical software
such as Mathematica. The challenge here is the need to
find starting values for the parameters which are represen-
tative of the situation under consideration and to ensure
that the solver used is stable with respect to measurement
noise and limited data.
Here, it is shown how the special structure of the mul-

tiplicative model can be exploited to derive an iterative
two-step procedure for the determination of the parame-
ters. An assessment of its robustness, using synthetic data,
is given. Validation is performed using microbial (fungal)
survival measurements.
The paper has been organized in the following manner.

The multiplicative model is discussed in Section 2 and
an analytic average lifetime formula for it is derived. The
algorithm is proposed in Section 3 and tested on synthetic
data in Section 4. The application of the algorithm to real
microbial survival data is the subject of Section 5 along
with conclusions.

2 Themodel
The multiplicative model proposed by Peleg et al. (2009)
[9] can be derived in various ways.

2.1 From first principles
For an initial populationN0 > 0, unrestrained growth can
be modelled as a positive exponent stretched exponential
(Kohlrausch) function

Ng(t) = N0 exp
[(

t
tcg

)m1]
, (3)

where tcg denotes the characteristic growth time and m1
characterizes the rate of growth.

The decay can be modelled in a similar manner as
a negative exponent stretched exponential (Kohlrausch)
function

fd(t) = exp
[
−

(
t
tcd

)m2]
, 0 ≤ fd(t) ≤ 1,m2 > m1,

(4)

where tcd denotes the characteristic decay time and m2
characterizes the rate of decay.
If it is assumed that the decay modifies the growth mul-

tiplicatively as a function of the time, then Eqs. (3) and (4)
combine to give

N(t) = Ng(t)fd(t)

or, equivalently,

N(t) = N0 exp
[(

t
tcg

)m1]
exp

[
−

(
t
tcd

)m2]
.

Justification for this being a realistic model of a four-
phase growth-decay process is given in Edwards et al. [7],
where it is shown that such a structure corresponds to
the solution of a non-autonomous ordinary differential
equation model of a quite general growth-decay process.

2.2 Solution of the non-autonomous von Bertalanffy
equation

As noted by Edwards et al. [7], a key property of the
multiplicative model (2) is that it is a solution of the
non-autonomous von Bertalanffy equation

dN
dt

= ᾱ(t)N β̄ − ā(t)Nb̄ +ψ(t),N(0) = N0, β̄ > 0, b̄ > 0,

(5)

when ᾱ(t) = αβtβ−1, β̄ = 1, ā(t) = abtb−1, b̄ = 1 and
ψ(t) = 0. On substituting these values into (5) and setting
ψ(t) = 0, the last equation becomes

dN
dt

= θ(t)N , θ(t) =
[
αβtβ−1 − abtb−1

]
, (6)

which becomes, when θ(t) is a constant because β = b =
1, the standard exponential growth-decay equation.
For the von Bertalanffy Eq. (5), Edwards and Ander-

ssen [6] have performed a Lie point symmetry analysis to
identify the regularity that ᾱ, β̄ , ā, b̄ and ψ(t) must sat-
isfy in order for (5) to have interesting classes of analytic
solutions (often referred to technically as non-trivial sym-
metries). Such symmetries can then be utilized to explore
for new closed form solutions.

2.3 Biological interpretation of the parameters α, β, a
and b

The relevance of the above two derivations for Eqs. (1) and
(2) is that they shed light on how to interpret the param-
eters α, β , a and b biologically and study their interactive
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interdependence. The starting point is Eq. (2) rewritten in
its equivalent form (6).
For the standard decay Eq. (6), when θ(t) is a constant θ0

and the population corresponds to a discrete ensemble of
members, as holds for microbial growth-decay, the char-
acteristic time of the exponential decay 1/θ0 corresponds
algebraically to the “mean lifetime”, �0, of the members in
the ensemble. (The algebraic details are contained in the
Appendix.) In addition, if all the individual lifetimes are
measured with respect to the same initial reference state,
then 1/θ0 corresponds to the arithmetic mean of these
individual times.
As highlighted in the Appendix, the mean lifetime con-

cept can be extended to any four-phase microbial growth-
decay situation which decays to zero. This generalized
mean lifetime will be denoted by �θ . Its importance relates
to the fact that it measures a key biologically relevant fea-
ture, the average life time of the microbes in a four-phase
growth-decay situation. From a food safety perspective, �θ

can be used to identify strategies that allow inactivation
to be performed effectively, whereas, from a pharmaceu-
tical perspective, an understanding of the value of �θ is
required to guarantee the time optimal harvesting of live
microbes.
The corresponding formula for the θ(t) of Eq. (6)

thereby takes the form

�θ = �α,β ,a,b =
∫ ∞

0
exp

(
ατβ − aτ b

)
τdτ/

∫ ∞

0
exp

(
ατβ − aτ b

)
dτ .

(7)

In particular, with respect to given growth-decay data,
the algorithm is used to determine the values of the
parameters α, β , a and b which are then substituted into
Eq. (7) which can be evaluated using Matlab.
As is clear from the form of the right hand side of Eq. (7),

the value of �α,β ,a,b can be used to compare different sce-
narios for the parameters α, β , a and b. For example, since
together α and β identify how a particular microbial pop-
ulation grows, the values of α and β could be fixed and
the values of a and b varied to find the minimum value
of the average lifetimes �α,β ,a,b as a characterization for an
optimal strategy for performing inactivation.
Comparative values for �α,β ,a,b for various growth-decay

dynamics are discussed in subsection 5.

2.4 Biological interpretation of the parameters tcg, tcd ,m1

andm2

If m1 = m2 = 1, the parameters tcg and tcd correspond,
respectively, to the characteristic times of the growth and
decay. In particular, they characterize how quickly the
growth and decay of the microbes within a population
occur, with the rate of growth (decay) being inversely pro-
portional to the value of tcg (tcd). Consequently, the values

of tcg and tcd give an immediate indicative illustration of
the relative strengths of the growth and decay dynamics.
However, the interpretation of the contributions of tcg

and tcd to the growth-decay dynamics must be modified
by the values of m1 and m2. Since m1 = β and m2 = b, it
follows, on equating coefficients in Eqs. (1) and (2), that

tcg = α−1/β = 1
α1/β and tcd = a−1/b = 1

a1/b
.

(8)

Consequently, multiple choice of α and β (a and b) will
generate the same value for tcg (tcd). Such ambiguities
are resolved by determining α and β (a and b) from the
experimental data of the growth-decay dynamics under
consideration. The linear least squares procedures, as out-
lined in section 3.1, achieve this by first estimating the
values of α and β , and then the values of a and b, separately
in an iterative manner.

2.5 Properties of the multiplicative model
Sufficient conditions, in terms of the parameters in the
more compact form (2) for the multiplicative model,
which guarantee a four-phase structure, are given by α >

a (which guarantees initial growth) and b > β (which
guarantees subsequent decay). Alternatively, in terms of
the general form of Eq. (6) with an arbitrary θ , four-phase
dynamics is guaranteed if θ(t) is initially positive, which
guarantees initial growth, and

∫ ∞
0 θ(τ )dτ = −∞, which

guarantees that subsequent decay occurs and goes to zero.
Taking logarithms of the more compact form (2) yields

the additive relationship

lnN(t) = lnN0 + αtβ − atb,

or

lnN(t) − lnN0 = αtβ − atb, (9)

which will play a key role in the formulation of the
algorithm.
Consequently, the logarithmic growth-decay dynam-

ics, at a given time t∗, corresponding to the number of
surviving microbes at that time, thereby becomes

d lnN(t)
dt

]
t∗

= αβtβ−1∗ − abtb−1∗ , (10)

which yields a connection back to themultiplicativemodel
being the solution of a particular form of the von Berta-
lanffy equation.

3 The algorithm
The essence of the current situation is the fitting of
the multiplicative model (2) to given experimental data,
which reduces to the determination of estimates for the
four parameters α, β , a, b. However, the multiplicative
model is non-linear and the amount of experimental data
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available is usually quite limited. The standard procedure
proposed by various authors is to use some non-linear
regression software package such as is available in Mat-
lab. The limitation here is the need to find starting values
for the parameters which are representative of the sit-
uation under consideration. In comparative assessment
situations, it is important that the estimates of the values
of the parameters α, β , a, b correctly characterize the sit-
uations being compared. For example, if the value of the
parameter b was used to assess the effectiveness of differ-
ent inactivation strategies, then the estimates of b, utilized
for the comparative assessment, must correctly represent
the actual decay occurring so that no incorrect action or
advice was implemented.
As explained below, because of the way in which the

estimation is performed, the determination of the param-
eters α, β , a, b is essentially unique in that the estimation
is performed, iteratively, as two separate steps involving
first the growth phase, to determine α and β , and then the
decay phase, to determine a and b.
In a sense, compared with non-linear least squares

methods, the proposed algorithm is an example of “let
the data decide”. The rationale is that if one just uses a
non-linear solver to do the parameter identification, then
no specific structure is exploited within the data which
relates to subsets of the parameters. In the algorithm pro-
posed here, this is possible as, in the multiplicative model,
the model is separable into a growth component, involv-
ing only α and β , and a decay component, involving only
a and b.

3.1 Estimating the parameters
In the past, different methods have been proposed and
used to model microbial growth and decay dynamics.
For instance, in order to assess the nature of the ini-

tial lag-phase of growth-decay dynamics, Baranyi et al.
[3] proposed the use of detection times. However, this
requires that the detection times be limited to the initial
exponential growth in order to avoid underestimating the
rate of growth of the lag-phase.
A different suggestion, proposed by Baranyi and col-

leagues [4, 5], was to solve a time separable non-
autonomous model of the form

dN(t)
dt

= φ(t)μ(N)N , N(0) = N0, (11)

where the separable time function φ(t) performs the
transformation of the autonomous equation

dN(t)
dt

= μ(N)N , N(0) = N0, (12)

into the non-autonomous Eq. (11). Various choices for
φ(t) have been proposed and analysed by Baranyi and
colleagues. However, they have not chosen a form for
φ(t) that corresponds to that for the non-autonomous

equation which generates the multiplicative model (2). In
particular, their emphasis is on modelling the growth of
the total population.
Peleg and Corradini [8], for determination of the param-

eters in the multiplicative model (1), suggest non-linear
least squares. The difficulty is that representative start-
ing values for the parameters must be chosen for the
implementation of such methods, which the proposed
algorithm avoids.
The algorithm proposed and implemented here, which

explicitly exploits the properties of logarithms, is based on
the iterative use of two linear least squares approximations
applied to different phases of a growth curve. Its advan-
tage is that it can be iterated to obtain successively better
approximations for the parameters α, β , a, b. This type
of algorithm does not appear to have been published in
the microbial growth modelling literature, though it has
been used to determine the parameters of the stretched
exponential (Kohlrausch) function in rheological and bio-
logical applications [1].
Consider the model in the form

N(t) = N0 exp
(
αtβ

)
exp

(
−atb

)
.

On taking the logarithm and reorganizing, the last
equation becomes

lnN(t) − lnN0 = αtβ − atb. (13)

For the initial growth data, the decay term exp
(−atb

)
can be neglected, since it is the behaviour of exp(αtβ) that
dominates at this stage. Consequently, the first step in the
implementation of the algorithm is the determination of
initial estimates α1 and β1 for α and β using the model

ln{lnN(t) − lnN0} = lnα + β ln t. (14)

With respect to a representative sample d∗
i = N(ti), i =

1, 2, · · · , I, I >> 2, of the first two of the four-phases,
a linear least squares estimate can be derived for lnα1,
and hence α1, and β1 using the overdetermined system of
equations

ln
[
ln d∗

i − lnN0
] = lnα + β ln ti, i = 1, 2, · · · , I.

(15)

The second step in the implementation of the algorithm
is the determination of initial estimates a1 and b1 for a and
b using the model

ln
{− lnN(t) + lnN0 + α1tβ1

} = ln a + b ln t. (16)

With respect to a representative sample d#j = N(tj), j =
1, 2, · · · , J , J >> 2, of the last two of the four-phases,
a linear least squares estimate can be derived for ln a1,
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and hence a1, and b1 using the overdetermined system of
equations

ln
[
− ln d#j + lnN0 + α1tβ1j

]

= [
ln a1 + b1 ln tj

]
, j = 1, 2, · · · , J .

(17)

The third step in the implementation of the algorithm is
the determination of estimates α2 and β2 for α and β using
the model

ln
{
lnN(t) − lnN0 + a1tb1

}
= lnα + β ln t. (18)

With respect to a representative sample d∗
� = N(t�), � =

1, 2, · · · , L, L >> 2, of the lag and growth phases,
a linear least squares estimate can be derived for lnα2,
and hence α2, and β2 using the overdetermined system of
equations

ln
[
ln d∗

� − lnN0 + a1tb1�

]
= lnα2 + β2 ln t�. (19)

The fourth, fifth, · · · steps in the implementation now
iterate, respectively, between the second and third steps.

3.2 Algorithm implementation
Because the implementation of the algorithm involves
the evaluation of logarithms, the choice of the scale for
the times becomes an important issue. In the situations
studied here, the basic time scale is days.
However, for measurements made at fractions of a day,

the logarithms will be negative. Consequently, to avoid
this potential difficulty, it is best to work with a time scale
(hours, minutes or seconds) such that all the times, at
which measurements were made, are greater than one.

4 The validation of the algorithm using synthetic
data

The numerical performance of the algorithm was ini-
tially assessed using the following uniform grid discrete
synthetic data

{N(ti)} = {N(ti) = N0 exp
(
αtβi

)

× exp
(
−atbi

)
| i = 1, 2, · · · , I},

(20)

where the values of N0 and the parameters α, β , a, b
are specified. The discrete values {N(ti)} were used to
simulate exact and non-exact measurements scenarios of
the four-phase growth-decay dynamics with the goal of
testing the performance of the algorithm with respect to

{1} the accuracy of the recovery of the parameters, and
{2} the quality of the reconstructions of the four-phase

growth-decay dynamics curves compared with the
actual N(t).

Though the comparison of the reconstructions of the
growth-decay dynamics is indicatively important, the key

issue is the robustness, accuracy and reliability of the
recovery of the parameters, as it is those that will be
used for subsequent decision-making and comparative
assessments.

4.1 The synthetic data analysis
The exact synthetic data used to test the algorithm was
generated using the discrete multiplicative model data
{N(ti)} of Eq. (20) with the parameter values α = 6, β =
1.5, a = 4, b = 2 and N0 = 100.

4.1.1 Exact synthetic data inversion
For the synthetic data situation without noise, only 7 data
points are needed to perform the parameter estimation
using the algorithm, which returns the correct values α =
6, β = 1.5, a = 4, b = 2.
The result for the exact data situation is illustrated in

Fig. 1, where the exact and estimated curves are recovered
exactly.

4.1.2 Simulation studies of non-exact synthetic data
inversion

It is known that, in carefully performed measurements
of microbial growth-decay dynamics, the measurement
error does not depend on the size of the population as it
evolves. Consequently, it was only necessary to test the
robustness of the algorithmwith respect to Gaussian error
perturbations.
For this, the exact discrete values {N(ti)} were per-

turbed in the following manner to generate the simulated
measurement data

d(G)
i = N(ti) + Kεi, i = 1, 2, · · · , 100, K ∼ constant,

(21)

with the {εi} being Gaussian errors with mean zero and
variance 1. In order to comprehensively test the perfor-
mance of the algorithm, the inversion was performed on

Fig. 1 Reconstruction for exact synthetic data
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500 realizations of the simulated measurement data d(G)
i

with the corresponding values of α, β , a, b, thereby
generated, summarized as histograms as in Fig. 2.
As is clear from Fig. 2, the level of uncertainty in the

determination of the parameters α, β , a, b increases as
the level of the addedGaussian errors increases. As is clear
from Fig. 1, the range of the values of N(t) is approxi-
mately ∼[0, 800]. Consequently, it is only when the value

of K, relative to N(t), becomes suitably large that a spread
in the values of α, β , a, b becomes graphically significant.
In addition, it shows that the values of the exponents β and
b aremore accurately recovered than themultipliers α and
a. This difference in the recovery of β and b, compared
with that for α and a, is confirmed in terms of the statis-
tics of the values of the parameters α, β , a, b tabulated in
Fig. 3.

Fig. 2 Histograms of the parameter value α, β , a, b for different levels of the added Gaussian errors for 500 realizations
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Fig. 3 The statistics of the parameters α, β , a, b for different levels of the added Gaussian errors for 500 realizations. The standard deviations for β
and b are considerably less than those for α and a

This difference represents a direct illustration of how
fundamental β and b are to determining the growth and
decay, respectively, in order to accurately recover a four-
phase structure. It implies that a good fit to a four-phase
structure cannot be achieved by simply varying α and a

unless good estimates of β and b have been determined.
This interpretation is implicit in the proposed algorithm,
as illustrated in Eqs. (19) and (17), which highlight that
β and b are the slopes of the straight lines that are fit-
ted to the logarithmic data. This relates to the fact that, in

Fig. 4 The errors in the estimated values of the parameters α, β , a, b as a function of the number of data point (25, 50, 100) for different levels of the
added Gaussian errors for 500 realizations
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Fig. 5 The standard deviations of the errors in the estimated values of the parameters α, β , a, b as a function of the number of data point (25, 50, 100)
for different levels of the added Gaussian errors for 500 realizations

terms of the linearity of the algebra of Eqs. (19) and (17),
the constants ln(α) and ln(a) do not influence the actual
slopes β and b of the straight line fits to the logarithmic
data.
Furthermore, the algorithm estimates β and b sepa-

rately using, respectively, a growth component and a decay
component of the four-phase structure. Consequently,
this illustrates the uniqueness in the determination of the
parameters α, β , a, b and, hence, the values of tcg and tcd
of Eq. (8).
The importance of the number of data points used in

the recovery of the parameters is illustrated in Figs. 4
and 5. It shows that something like ∼50 data points are
required to guarantee reliable results. This highlights the
difficulty of the often occurring practical situation of only
having a small number of measurements (such as 10) of
the growth-decay dynamics.

5 Application of the algorithm tomicrobial
survival data and conclusions

5.1 Recovery of the parameters α, β, a, b
In order to illustrate the practicality of the algorithm for
real data, it was applied to the measurements from a study
of the growth-decay dynamics for the filametus fungus
Fusarium oxysporum.

Fusarium oxysporum is a plant pathogenic fungus with
a wide host range causing a variety of diseases contribut-
ing to crop losses all over the globe. To obtain microbial
growth data in a closed environment we monitored the
growth of the fungus Fusarium oxysporum in minimal

Fig. 6 The growth-decay dynamics for the fungus Fusarium oxysporum
f.sp. conglutinans
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Fig. 7 Histograms for the values of �α,β ,a,b for different levels of the added Gaussian errors for 500 realizations using the synthetic data of Eq. (21)

media. A primary potato dextrose broth culture was inoc-
ulated with Conidiospores from a −80 °C frozen stock
and grown at 28 °C, shaking at 200 rpm for 2 days. Cells
were collected by centrifugation, suspended in water, the
optical density at 260 nm was measured and the cell con-
centration determined by comparison with a standard
curve. A fresh secondary minimal medium culture was
inoculated with 1.0E6 cells/ml and grown as above. In
a temporal fashion, 1000μl samples were removed from
the culture, the cells collected by centrifugation and sus-
pended in water (between 100μl and 500μl) adjusting
the suspension volume as the culture became denser. Care
was taken that cells were well suspended at all times
by vigorous vortexing. Cells were then stained with Pro-
pidium Iodide for 5 minutes. Microscopic images were
taken using three independent 5μl subsamples imaging
at least 7 independent regions of each sample. Bright field
and fluorescence images were taken and the total num-
ber of cells counted using the bright field image. Dead
cell counts were obtained from fluorescent images as pro-
pidium iodide permeates the membranes of dead cells
staining these red. The average number of total and dead
cells was determined and, as the cell suspension was more
concentrated than the culture, the suspension volume was
taken into account to determine the proportional number
of total and dead cells in the culture.
The measurements represent a situation where the data

is sparse and has only been measured for part of the decay
phase. Nevertheless, it contains sufficient data to allow the
algorithm to recover useful estimates of the parameters
α, β , a, b, which can be used to evaluate �θ of Eq. (7).

5.2 Evaluation of average lifetimes �α,β,a,b

The generalized mean lifetime �α,β ,a,b of Eq. (7) was eval-
uated for the exact synthetic data of Fig. 1 and the fungus
data of Fig. 6. The resulting values were 1.223757 and
14.14 days. Corresponding to the 500 simulations dis-
cussed above in relation to Figs. 1 and 2, the correspond-
ing histogram for the resulting �α,β ,a,b values is plotted in
Fig. 7. The means of the histograms in Fig. 7 are all the

same for the three levels of noise considered, which repre-
sents indirect proof of the stability of �α,β ,a,b. Its accuracy
and reliability are reflected in the fact that these histogram
means correspond to the rounding of the exact value of
1.223757.

5.3 Conclusions
For the determination of the four parameters α,β , a, b
in the multiplicative model (2), a simple, easily imple-
mentable, iterative two-stage linear least squares algo-
rithm has been proposed. Its robustness has been con-
firmed by testing it on synthetic data. Its practicality has
been demostrated by applying it to measured growth-
decay for the fungus Fusarium oxysporum.
In addition, for the multiplicative model, an analytic for-

mula has been derived for estimating the average lifetimes
�α,β ,a,b of the surviving microbes, which has been applied
to the synthetic and measured data.
Overall, it appears that the numerical performance

of the algorithm and the average liftime estimate will
be useful in the support of decision-making related to
health issues such as food safety and pharmaceutical
manufacture.

Appendix
Mean lifetime for microbial growth-decay for the
multiplicative model
The standard decaymodel

dN
dt

= −λN , N = N(t), N(0) = N0, λ > 0

(22)

⇓
⇓ Solve:
⇓

N(t) = N0 exp(−λt), N(∞) = 0 (23)

⇓
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⇓ Transform N(t) to an exponential probability
distribution:

⇓
P(N(t)) = λ

N0
N(t) = λ exp(−λt) (24)

⇓
⇓ The mean of the exponential distribution is λ:
⇓
1
λ

= τ = relaxation time = mean lifetime

The generalized decaymodel

dNθ

dt
= θ(t)Nθ , Nθ (0) = N0, θ(t) = αβtβ−1 − abtb−1

(25)

⇓
⇓ Solve:
⇓

Nθ (t) = N0 exp(
∫ t

0
θ(τ )dτ), Nθ (∞) = 0

(26)

⇓
⇓ Regularity: θ(0) > 0 and

∫ ∞
0 θ(τ )dτ = −∞

⇓
⇓ Transform Nθ (t) to a probability distribution:
⇓

P(Nθ (t)) = Nθ (t)
A(Nθ (t))

, A(Nθ (t)) =
∫ ∞

0
Nθ (τ )τ

(27)

⇓
⇓ Compute the mean of P(Nθ (t)):
⇓

M(P(Nθ (t))) =
∫ ∞

0
P(Nθ (τ ))τdτ
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