
Le et al. Pacific Journal of Mathematics for Industry  (2016) 8:1 
DOI 10.1186/s40736-015-0020-6

ORIGINAL ARTICLE Open Access

Numerical simulation of tidal flow in
Danang Bay Based on non-hydrostatic shallow
water equations
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Abstract

This paper presents a numerical simulation of the tidal flow in Danang Bay (Vietnam) based on the non-hydrostatic
shallow water equations. First, to test the simulation capability of the non-hydrostatic model, we have made a test
simulation comparing it with the experiment by Beji and Battjes 1993, Coastal Engineering 23, 1–16. Simulation results
for this case are compared with both the experimental data and calculations obtained from the traditional hydrostatic
model. It is shown that the non-hydrostatic model is better than the hydrostatic model when the seabed topography
variation is complex. The usefulness of the non-hydrostatic model is father shown by successfully simulating the tidal
flow of Danang Bay.
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1 Introduction
The effect of non-hydrostatic pressure on the shallow-
water model has been a topic of interest for the shallow-
water to simulate long waves such as tides, storm surges,
and tsunamis. The finite difference method is widely used
in the solution schemes of the depth-integrated governing
equations. Researchers have made an effort for improv-
ing numerical schemes and boundary treatments tomodel
long-wave propagation, transformation, and run-up.
Stelling and Duinmeijer [14] provided a numerical tech-

nique that in essence is based upon the classical staggered
grids and implicit numerical integration schemes, but
that can be applied to problems that include rapidly var-
ied flows as well. They imposed energy conservation to
strong flow contractions and momentum conservation to
mild flow contractions and expansions. Their approach
approximates flow discontinuities as bores or hydraulic
jumps as in a finite volume model, using a Riemann
solver [4, 5, 22]. Horrillo et al. [6] showed some of the
implications of dispersion effects in tsunami propagation
and run-up through the processes as follow: first, a brief
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description of the model formulation and their numer-
ical schemes is presented. Therefore, several numerical
experiments are described with initial conditions for free
surface deformations. Then, model results are compared
against each other. Finally, observations and model results
are analyzed to draw conclusion on the spatial and tempo-
ral distributions of the free surface.
Stelling and Zijlema [15] employed the Keller-box

method that takes into account the effect of non-
hydrostatic pressure of free-surface flows with a very small
number of vertical grid points to approximate the vertical
gradient of the pressure arising in the Reynolds-averaged
NavierStokes equations. In both the depth-integrated and
multi-layer formulations, they decompose the pressure
into hydrostatic and non-hydrostatic components follow-
ing Casulli [2] and apply the Keller-box scheme [7] to the
vertical gradient approximation of the non-hydrostatic
pressure. Then they proposed a semi-implicit finite dif-
ference scheme, which accounts for dispersion through a
non-hydrostatic pressure term. Walters [18] adapted this
non-hydrostatic approach to a finite element method.
His numerical results showed that both depth-integrated
models estimate the dispersive waves slightly better than
the classical Boussinesq equations by Peregrine [13].
Zijlema and Stelling [23] recently extended their multi-
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layer model without using of empirical relations to energy
dissipation by using a compact finite difference scheme.
Their accurate computation of frequency dispersion saves
vertical resolution and hence is capable of predicting
the onset of wave breaking. A novel wet-dry algorithm
is applied for a proper handling of moving shoreline.
Mass and momentum are strictly conserved at discrete
level while the method allow for energy dissipation only
in the case of wave breaking and provide compara-
ble results with those of extended Boussinesq models
[3, 10, 12]. Mader [11] proposed a unique upwind scheme
that extrapolates the surface elevation instead of the flow
depth to determine explicitly the flux in the continuity
equation of a nonlinear shallow-water model. Kowalik
et al. [8] implemented this upwind flux approximation and
showed remarkable stability in simulating global tsunami
propagation and run-up. It exhibits high-order accuracy
for the spatial derivatives. The boundary condition at the
shore line is controlled by the total depth and can be set
either to runup or to the zero normal velocity. Yamazaki et
al. [19] have proposed a depth-integrated non-hydrostatic
model which is capable of handling flow discontinuities
associated with wave breaking and hydraulic jumps.
Their model builds on an explicit scheme of the nonlinear
shallow-water equations and makes possible a direct
implementation of the upwind flux approximation of
Kowalik et al. [8] in order to improve model stability for
discontinuous flow. The improved model includes an
empirical coefficient α (α ≥ 0). In their treatment, the
empirical coefficient α related to the depth-integrated
non-hydrostatic pressure is approximated by 0.5.
Wei and Jia [21] provided a two-dimensional finite ele-

ment method based on the FEM platform of CCHE2D
for simulating dynamic propagation of weakly dispersive
waves. A physically bounded upwind scheme for dis-
cretizing the advection term is developed, and the quasi
second-order differential operators of this scheme result
in no oscillation and little numerical diffusion.
The purpose of this paper is to present a formulation

of a new general non-hydrostatic shallow-water equations
with disposable parameter related to integration of the
pressure in the depth. Section 2 provides the equations
augmented with parameter α (α ≥ 0) by applying the
Leibniz rule for the non-hydrostatic pressure component
together with the boundary conditions. The parameter α

is determined by the vertical average of f (z) with α =
0 corresponding to the hydrostatic approximation. The
numerical model is also presented in Section 2 through
three main steps as follows: The first is an explicit method
for hydrostatic component of the pressure, and the sec-
ond is a formulation of the Poisson equation for implicitly
solving the non-hydrostatic pressure. Then the third is
their combination. Section 3 presents the results of the
application of our non-hydrostatic model to simulate tidal

flow. Section 3 makes a comparison between the non-
hydrostatic model and the traditional hydrostatic model
for laboratory experiment of sinusoidal wave propagation
over a submerged barrier in a wave channel. In particu-
lar, our model is applied to simulate actual tidal flows in
Danang Bay (Vietnam), successfully obtaining good agree-
ment withmeasured data. Section 4 presents discussion in
a wider viewpoint and proposes further development with
other conditions to simulation in various other problems,
such as: tides, storm surges and tsunamis, etc.

2 Derivation of themodel for shallowwater flow
with non-hydrostatic pressure

2.1 The governing equations
We assume an incompressible fluid in a uniform environ-
ment. Then, we can write the Navier-Stokes equations as

∂u
∂t

+u
∂u
∂x

+v
∂u
∂y

+w
∂u
∂z

= − 1
ρ

∂P
∂x

+ν

(
∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

)
,

(1)

∂v
∂t

+u
∂v
∂x

+v
∂v
∂y

+w
∂v
∂z

= − 1
ρ

∂P
∂y

+ν

(
∂2v
∂x2

+ ∂2v
∂y2

+ ∂2v
∂z2

)
,

(2)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= − 1
ρ

∂P
∂z

+ ν

(
∂2w
∂x2

+ ∂2w
∂y2

+ ∂2w
∂z2

)
− g.

(3)

The continuity equation is given by

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0. (4)

and the surface equation is

ζ = ζ (x, y, t) , (5)

where (u, v,w) are the velocity components in the hori-
zontal (x and y-) directions and in the vertical (z-) direc-
tion, respectively. t is time, ρ is the density of water, ν is
the kinetic viscosity coefficient; P is the pressure, and g is
the gravitational acceleration.
The pressure at any point is divided into two compo-

nents: the hydrostatic pressure and the non-hydrostatic
pressure, as follows [20]:

P = ρg (ζ − z) + q̂ (x, y, z, t) , (6)

where, q̂ (x, y, z, t) is defined as the non-hydrostatic pres-
sure.
We integrate the component of the momentum

equation in the vertical coordinate from the bottom
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(z = −h) to the surface (z = ζ ). We introduce the
definition of the vertical average of any quantity f as

F = 1
D

ζ∫
−h

fdz, (7)

where ζ is the surface elevation height, h is the still-water
depth and D = ζ + h is the total water depth from the
bottom to the surface. We obtain

ζ∫
−h

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)
dz

= − 1
ρ

ζ∫
−h

∂P
∂x

dz + ν

ζ∫
−h

(
∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

)
dz.

(8)

The term
ζ∫

−h
w ∂u

∂z dz is very small and can be neglected.

For wave motion, we assume that the fluid velocity is

small, so the viscosity term ν
ζ∫

−h

(
∂2u
∂x2 + ∂2u

∂y2

)
dz is small

relative to the advection term and can therefore be
neglected too.
We consider the first term of the right-hand side

− 1
ρ

ζ∫
−h

∂P
∂x

dz = − 1
ρ

ζ∫
−h

∂

∂x
[
ρg (ζ − z) + q̂

]
dz

= −gD
∂ζ

∂x
− 1

ρ

ζ∫
−h

∂ q̂
∂x

dz.

(9)

In order to generalize Yamazaki et al. (2008), we rep-
resent the non-hydrostatic component of the pressure by
introducing some function as

q̂ (x, y, z, t) = q (x, y,−h, t) f (z) , (10)

where f−h = f (−h) = 1. Then, by applying the Leibniz
rule, we have

ζ∫
−h

∂ q̂
∂x

dz = ∂

∂x

ζ∫
−h

q̂dz − q̂ζ

∂ζ

∂x
+ q̂−h

∂ (−h)
∂x

. (11)

Then, we obtain

ζ∫
−h

∂ q̂
∂x

dz = ∂

∂x
q

ζ∫
−h

fdz + 0 + q−hf−h
∂ (−h)

∂x
, (12)

with q̂ζ = 0 since the total pressure vanishes at the free

surface. We introduce parameter α by α = 1
D

ζ∫
−h

fdz. We

see that α is an empirical coefficient related to the depth-
integrated non-hydrostatic pressure and can be expressed
as the vertical average of f (z). Equation (12) then become

ζ∫
−h

∂ q̂
∂x

dz = D
∂

∂x
(αq) + q

(
α

∂ζ

∂x
+ (1 − α)

∂(−h)
∂x

)
.

(13)

If f (z) is taken to be a linear function, the value of α is
1/2. The non-hydrostatic pressure at the bottom has been
written simply as q now.

− 1
ρ

ζ∫
−h

∂P
∂x

dz = − 1
ρ

ζ∫
−h

∂

∂x
[
ρg (ζ − z) + q̂

]
dz

= −gD
∂ζ

∂x
− 1

ρ
Dα

∂q
∂x

− α
q
ρ

∂ζ

∂x

− (1 − α)
q
ρ

∂(−h)
∂x

,

(14)

Finally, after integration, the first momentum equation in
the x direction results in

∂U
∂t

+ U
∂U
∂x

+ V
∂U
∂y

= − g
∂ζ

∂x
− 1

ρ
α

∂q
∂x

− α
q

ρD
∂ζ

∂x

− (1 − α)
q

ρD
∂(−h)

∂x
− g

C2
z

U
√
U2 + V 2

ρD
,

(15)

whereU and V are the vertical averages of u and v and the
last term originates from the friction force at the bottom.
Here, Cz is a constant called the Chezy coefficient.
Similarly, the second momentum Eq. (2) in the y direc-

tion gives

∂V
∂t

+ U
∂V
∂x

+ V
∂V
∂y

= − g
∂ζ

∂y
− 1

ρ
α

∂q
∂y

− α
q

ρD
∂ζ

∂y

− (1 − α)
q

ρD
∂(−h)

∂y
− g

C2
z

V
√
U2 + V 2

ρD
(16)

There are generalization of Yamazaki et al. (2008) to
introduce a disposal parameter α.
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Integrating the third momentum Eq. (3) in the z direc-
tion (3) we obtain

ζ∫
−h

∂w
∂t

dz +
ζ∫

−h

(
u

∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

)
dz = − 1

ρ

ζ∫
−h

∂P
∂z

dz

+ ν

ζ∫
−h

(
∂2w
∂x2

+ ∂2w
∂y2

+ ∂2w
∂z2

)
dz − g

ζ∫
−h

dz

(17)

For propagation of long wave of large scale,
the viscous term is negligible and so the terms

ν
ζ∫

−h

(
∂2w
∂x2 + ∂2w

∂y2 + ∂2w
∂z2

)
dz is neglected.

At the right-hand side of Eq. (17), after neglecting the
above terms, we have

− 1
ρ

ζ∫

−h

∂P
∂z

dz −
ζ∫

−h

gdz = − 1
ρ

[
P|z=ζ − P|z=−h

] − gD

=− 1
ρ

[
q̂|z=ζ − q̂|z=−h

] = q̂z=−h
ρ

= q
ρ
.

(18)

Where, q is again the non-hydrostatic pressure at the
bottom as in the momentum equations in the horizontal
directions x and y has a link with q̂ through (10). We recall
that q̂|z=ζ = 0 since the total pressure vanishes at the free
surface. The third momentum equation, in the z direction,
after integrating results in z, become

∂W
∂t

= q
ρD

, (19)

Integrating the continuity equation, we obtain

D
∂U
∂x

+ D
∂V
∂y

+ w|z=ζ − w|z=−h = 0. (20)

Using the boundary conditions

w|z=−h = d(−h)
dt

= −u
∂h
∂x

− v
∂h
∂y

, (21)

at the bottom

w|z=ζ = d(ζ )

dt
= ∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
, (22)

at the surface and substituting them into Eq. (20), we
obtain

∂ζ

∂t
+ ∂ (UD)

∂x
+ ∂ (VD)

∂y
= 0. (23)

We have eventually the governing equations with the
effect of non-hydrostatic pressure for an incompressible
fluid in uniform environments as the system of Eqs. (15),

(16), (19) and (23). Because the distribution of the vertical
velocity is unknown, it is approximated by [17]:

W = Wζ + W−h
2

= Ws + Wb
2

. (24)

2.2 Boundary conditions
Here, we use five the boundary conditions as follow:

i. Free surface: The wind stress and the surface ten-
sion are not considered. Only the atmospheric pressure is
imposed on the free surface level.
ii. Bottom: The vertical velocity at the bottom is calcu-
lated from the kinematic boundary condition (21).
iii. We consider source waves in the form

ζ = A cos
2π t
T

(25)

where A is the wave amplitude, T is the wave period.
iv. Neuman condition is imposed at the end of a river
where the flow enters the sea.

∂−→u
∂−→n = 0. (26)

v. The impermeable boundary enforces

un = 0, (27)

along the coast or at the wall.

2.3 Numerical model
The input of the problem are the initial conditions
U0,V0,W0, ζ0, q0, physical constants and relative condi-
tions. The outputs are the horizontal velocity components
U and V, the vertical velocity W, the surface elevation ζ ,
and the non-hydrostatic pressure component q, where the
water depth h is defined. Figure 1 shows the spatial grid
for computation.

Fig. 1 The difference grid map
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In the first step, we use an explicit method for the
hydrostatic components as follows

∂U
∂t

+U
∂U
∂x

+V
∂U
∂y

= −g
∂ζ

∂x
− g
C2
z

U
√
U2 + V 2

ρD
, (28)

∂V
∂t

+U
∂V
∂x

+V
∂V
∂y

= −g
∂ζ

∂y
− g
C2
z

V
√
U2 + V 2

ρD
. (29)

For the horizontal velocity components we have

Um+1
i,j = Um

i,j − g �t
�x

(
ζm
i,j − ζm

i−1,j

)
− �t

�xU
m
p

(
Um
i,j − Um

i−1,j

)
− �t

�xU
m
n

(
Um
i+1,j − Um

i,j

)
− �t

�yV
m
yp

(
Um
i,j − Um

i,j−1

)

− �t
�y V̄

m
xn

(
Um
i,j+1 − Um

i,j

)
− g

C2
z

�tUm
i,j

√(
Um
i,j

)2+(
V̄m
xi,j

)2
Dm
i−1,j+Dm

i,j
,

(30)

Vm+1
i,j = Vm

i,j − g �t
�y

(
ζm
i,j+1 − ζm

i,j

)
− �t

�x Ū
m
yp

(
Vm
i,j − Vm

i−1,j

)
− �t

�x Ū
m
yn

(
Vm
i+1,j − Vm

i,j

)
− �t

�yV
m
p

(
Vm
i,j − Vm

i,j−1

)

− �t
�yV

m
n

(
Vm
i,j+1 − Vm

i,j

)
− g

C2
z

�tVm
i,j

√(
Ūm
yi,j

)2+(
Vm
i,j

)2
Dm
i,j+Dm

i,j+1
,

(31)

where superscript m denotes the time, subsript p and
n describe a positive flow and a negative flow respec-
tively, and V̄m

xp , V̄
m
xn , Ū

m
yp , and Ūm

yn which were defined in
the model of Yamazaki et al. [19] are advective speeds in
the respective y- and x- momentum equations. The value
of the depth-averaged velocity components U and V used
in the momentum equations in the x and y directions are
respectively defined by [19]

Ūm
yi,j = 1

4
(
Ui,j + Ui+1,j + Ui+1,j+1 + Ui,j+1

)
, (32)

V̄m
xi,j = 1

4
(
Vi,j + Vi−1,j + Vi−1,j−1 + Vi,j−1

)
. (33)

In the second step, we will present a formulation where
the Poisson equation is implicitly solved for the non-
hydrostatic pressure. The final velocity is updated with the
non-hydrostatic pressure.
Discretization of the vertical momentum Eq. (19) given

the vertical velocity at the free surface as

Wm+1
si,j = Wm

si,j −
(
Wm+1

bi,j − Wm
bi,j

)
+ 2�t

ρDm
i,j
qm+1
i,j , (34)

where Wm
si,j and Wm

bi,j are the vertical velocities at time m,
at the surface and the bottom respectively. The horizontal
velocities influenced by the non-hydrostatic pressure are
expressed as

Um+1
i,j = Ũm+1

i,j − �t
ρ�x

(
qm+1
i,j + qm+1

i−1,j

)
(
Dm
i,j + Dm

i−1,j

)

×
[
α

(
ζm
i,j − ζm

i−1,j

)
+ (1 − α)

(
hi,j − hi−1,j

)]

− �t
ρ�x

α
(
qm+1
i,j − qm+1

i−1,j

)
,

(35)

Vm+1
i,j = Ṽm+1

i,j − �t
ρ�y

(
qm+1
i,j+1 + qm+1

i,j

)
(
Dm
i,j + Dm

i,j+1

)

×
[
α

(
ζm
i,j+1 − ζm

i,j

)
+ (1 − α)

(
hi,j+1 − hi,j

)]

− �t
ρ�y

α
(
qm+1
i,j+1 − qm+1

i,j

)
.

(36)

The continuity equation is directly applied for the
depth-averaged water column,

Um+1
i+1,j − Um+1

i,j

�x
+Vm+1

i,j − Vm+1
i,j−1

�y
+
Wm+1

si,j − Wm+1
bi,j

Dm
i,j

= 0,

(37)

The vertical velocity at the bottom is calculated from the
boundary condition in Eq. (21) as

Wm+1
bi,j = − Ūm

zp
hi,j − hi−1,j

�x
− Ūm

zn
hi+1,j − hi,j

�x
− V̄m

zp
hi,j − hi,j−1

�y

− V̄m
zn
hi,j+1 − hi,j

�y
.

(38)

Finally, we obtain the Poisson equation to find the non-
hydrostatic pressure as

APi,jqm+1
i−1,j + AWi,jqm+1

i+1,j + AEi,jqm+1
i,j−1 + ANi,jqm+1

i,j−1

+ ASi,jqm+1
i,j = Si,j,

(39)

where
�t

ρ�x2
(−α + Ai,j

) = APi,j, �t
ρ�x2

(−α − Ai+1,j
) = AWi,j,

�t
ρ�y2

(−α + Bi,j−1
) = AEi,j, �t

ρ�y2
(−α − Bi,j

) = ANi,j,

(40)
�t

ρ�x2
(
α + Ai,j − Ai+1,j

) + �t
ρ�y2

(
1 + Bi,j−1 − Bi,j

)

+ 2�t

ρ
(
Dm
i,j

)2 = ASi,j,

(41)
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− Um+1
i+1,j − Um+1

i,j

�x
− Vm+1

i,j − Vm+1
i,j−1

�y

−
Wm

si,j + Wm
bi,j − 2Wm+1

bi,j
Dm
i,j

= Qi,j,

(42)

[
α

(
ζm
i,j − ζm

i−1,j

)
+ (1 − α)

(
hi,j − hi−1,j

)]
(
Dm
i,j + Dm

i−1,j

) = Ai,j,

[
α

(
ζm
i,j+1 − ζm

i,j

)
+ (1 − α)

(
hi,j+1 − hi,j

)]
(
Dm
i,j + Dm

i,j+1

) = Bi,j.

(43)

In the third step, the surface elevation is calculated from
the mass conservation Eq. (23) as [9]

ζm+1
i,j = ζm

i,j − �t
(
FLXi+1,j − FLXi,j

)
�x

− �t
(
FLYi,j − FLYi,j−1

)
�y

,

(44)

where

⎧⎨
⎩
FLXi,j = Um+1

p ζm
i−1,j + Um+1

n ζm
i,j + Um+1

i,j
(hi−1,j+hi,j)

2 ,

FLYi,j = Vm+1
p ζm

i,j + Vm+1
n ζm

i,j+1 + Vm+1
i,j

(
hj,k+hi,j+1

)
2 .

(45)

3 Results of the application of the
non-hydrostatic model to simulate flow

3.1 Wave propagation over a submerged barrier in a
wave channel.

Figure 2 shows our numerical setup mirroring the experi-
ment of Beji and Battjes [1] to simulate wave propagation
over a submerged barrier in a wave flume 37.7 m long,
0.8 m wide and 0.75 m high; the still water height H is
0.4 m, a 0.3 m high trapezoidal barrier with an offshore
slope of 1:20 and a shoreward slope of 1:10 is set between

6.0 and 17.0 m in the flume and a 1:25 plane beach with
coarse material. At the left side is an open-flow area mod-
eled by imposing a radiation boundary condition [17].
The incident sinusoidal waves of wave number k have
an amplitude of 1.0 m and a wave period of 2.02 s, cor-
responding to the water depth parameter kH = 0.67
and are generated at the left side, based on the linear
wave theory. We use mesh sizes �x = �y = 1.25 cm,
time interval �t = 0.01 s and the Courant constant
Cr = 0.5. Here, the Courant constant reflects the por-
tion of a cell that a solute will traverse by advection in
one time step and the stability of the numerical model is
affected by the value of Courant parameter. When advec-
tion dominates dispersion, designing a model with a small
Courant number will decrease oscillation, improve accu-
racy and decrease numerical dispersion. The value of
Courant parameter changes with themethod used to solve
the discretised equation, especially depending on whether
the finite-difference method for time derivative or the
time advancement is explicit or implicit.
Figure 3 shows the calculated results of water waves

using the hydrostatic (dashed liner) and non-hydrostatic
models (solid liner) for eight experimental datasets. We
clearly observe that results of the non-hydrostatic model
are almost identical to the experimental data and are
far better than the traditional hydrostatic model. In par-
ticular, the results calculated under the non-hydrostatic
model show that this model can simulate the water fluc-
tuation well while the traditional hydrostatic model could
not reproduce the secondary waves at datasets G3 to G8
marked with the numbere in the above in Fig. 2. The
secondary waves are generated due to the effects of the
submerged barrier in the wave channel.

3.2 Numerical simulation of tidal flow in Da Nang Bay,
Vietnam

Now we applied our model to simulate the tidal flow
in Danang Bay (Vietnam) including three measuring
points of water level fluctuation: Hon Chao (longitude

Fig. 2 Numerical model setup of sinusoidal waves propagation over a submerged bar in flume
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Fig. 3 Comparison of water level fluctuation between the non-hydrostatic and hydrostatic models with experimental data

108.219◦E, latitude 16.226◦N), Cua Vinh (longitude
108.217◦E, latitude 16.177◦N and Giua Vinh (longitude
108.18◦E, latitude 16.138◦N) as in Fig. 4. The coastal
length of Danang Bay is 92 km and is discretized with

�x = �y = 150m,�t = 1 h , with themaximumCourant
number Cr = 0.5, and a friction coefficient Cf = 0.002.
The total calculation time is onemonth (fromMay 1, 2014
to May 31, 2014). And the tidal source term used is
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Fig. 4 Position of the measuring points in the simulated region at Danang Bay, Vietnam, reproduced from Google Earth (https://goo.gl/maps/
DJHVpRTejF82)

ζ = A0 +
n∑

i=1
Ai cos

(
ωit − gi

)
(46)

where Ai is the amplitude of the i − th wave, is its angu-
lar frequency and gi its phase. The tidal parameters are
interpolated from the global parameter table.

Figure 5 shows the simulation results for the tidal flow in
Danang Bay at the rising phase (May 1st 2014, 18:00) and
at the receding phase (May 2nd 2014, 03:00). In general,
the tidal flow is very small at all tidal phases.
Figure 6 shows the simulation results of water level fluc-

tuation as compared to the measured data analysis using

Fig. 5 The calculated velocity distribution at the rising tidal phase and at the receding tidal phase

https://goo.gl/maps/DJHVpRTejF82
https://goo.gl/maps/DJHVpRTejF82
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Fig. 6 Simulation results of water level fluctuation based on the non-hydrostatic shallow water model. The measured data are shown with circles.
(a. Hon Chao, b. Cua Vinh, c. Giua Vinh)

the harmonic constants. The discrepancy is negligibly
small.

4 Conclusions
This paper has presented a formulation of a new general
shallow-water equations augmented by non-hydrostatic
pressure effect having parameter α related to the depth-
integrated non-hydrostatic pressure. The total pressure is
decomposed into the hydrostatic and the non-hydrostatic
components. The resulting equations are integrated in
several steps. In the numerical model, the explicit method
is applied to the hydrostatic component of the pressure,
and the formulation of the Poisson equation for implic-
itly solving the non-hydrostatic pressure. This paper
has demonstrated the versatility and robustness of the
effect of non-hydrostatic pressure for simulating tidal
flow. The simulation results were compared with the
experimental data for wave propagation in a flume.
The tradional hydrostatic-pressure model and our non-
hydrostatic pressure model were both compared with

eight experimental data sets. The results of our non-
hydrostatic model exhibits agreement with the experi-
mental data and is better than the traditional hydrostatic
model. A numerical model was derived and successfully
applied to simulate the tidal flow in Danang Bay, Vietnam.
The simulation results for this last case were also com-
pared with measurement data to show the applicability to
the tidal problem.
In the model of Yamazaki et al. [19], the non-hydrostatic

component of the pressure has been incororated into the
average value of the pressure component at the bottom
and at the surface. In our model, this component has been
represented by introducing some function (10) and the
parameter α. This shew that the calculation results are
better than the model of Yamazaki et al. and it is possible
for application widely in other problems of the flow.
In the future, the effect of the rotation of the earth and

the density variation of water with depth will tackled for
simulating in propagation of the waves. The considera-
tion of the effect of these components is necessary and is
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expected to improve the accurately in approximation. We
also propose further development of other possible con-
ditions applied to simulation in other problems, such as
tides, storm surges and tsunamis, etc.
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