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Abstract

In questionnaire studies for evaluating objects such as manufacturing products, evaluators are required to respond to
several evaluation items for the objects. When the number of objects is large, a part of the objects is often assigned
randomly to each evaluator, and the response becomes a matrix with missing components. To handle this kind of
data, we consider a model by using a dummy matrix representing the existence of the missing components, which
can be interpreted as an extension of the GMANOVA model. In addition, to cope with the case where the numbers of
the object and evaluation items are large, we consider a ridge-type estimator peculiar to our model to avoid instability
in estimation. Moreover, we derive a Cp criterion in order to select the tuning parameters included in our estimator.
Finally, we check the validity of the proposed method through simulation studies and real data analysis.
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1 Introduction
In questionnaire studies, N evaluators are often required
to respond K evaluation items forM objects selected ran-
domly from J objects. For instance, they evaluate on a
scale 1 to 5 for each of the evaluation items. Because
the evaluator responds only for M objects, evaluations
for the rest of J − M objects are missing, that is, we can
not observe them. Therefore, we have a three-dimensional
array data of size J × K × N consisting of the MKN
observations and (J − M)KN missing values.
For such data, we are often interested in predicting the

missing values based on the observations (for example,
recommendation systems of Amazon or Netflix). Nowa-
days methods such as collaborative filtering or matrix
completion are developed to predict the missing part. To
predict it, it is indispensable to assume some conditions
for the data structure in general. For example, Candès &
Recht [2], and Koltchinskii et al. [5] reconstruct the matrix
by assuming that the data structure is low-rank, and this is
useful since it enables us to use a popular method of con-
vex optimization. However, it is difficult to select a tuning
parameter which is included in the method because we
have no reasonable information criterion. In addition, it
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is difficult to evaluate the prediction accuracy because
we have no evaluation formula for the variance of the
predicted value.
On the other hand, correspondence analysis has been

used in questionnaire data analysis in order to extract
features from the data (e.g., Benzécri [1]). Correspon-
dence analysis, however, is an exploratory method just
like principal component analysis and is not applica-
ble to the data including missing values. So we can not
use it to analyze our data. As described in Section 2, it
is possible to construct a parametric model by using a
dummy matrix representing the existence of the missing
values. The model we will consider can be interpreted
as an extension of the generalized multivariate analy-
sis of variance (GMANOVA) model in Potthoff & Roy
[9] to for three-dimensional array data. Usually, a noise
in the GMANOVA model is assumed to be distributed
some Gaussian distribution. Unfortunately, since the data
obtained from questionnaire study are discrete in general,
it is unnatural to assume the normality for noise. Even so,
we can express the ordinal least squares estimator explic-
itly and moreover evaluate the average or variance of the
estimator. However, we encounter a problem that the esti-
mator becomes unstable whenM orK is large or when the
multicollinearity is present in the data.
The ridge-type estimator is often used in order to assure

the stability of the estimator (e.g., Hoerl & Kennard [4]).
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We then need to choose appropriate tuning parameters
included in the estimator. Computational methods such as
cross validation (CV; Stone [10]) are usually used for this
choice although they come at a considerable computation
cost. Information criteria such as Cp (Mallows [6, 7]) may
also be used to choose it. For example, Nagai [8] derived
an unbiased estimator of the standardized mean squared
error for the ridge-type estimator in the GMANOVA
model. However, the objective variable in our data is an
(M × K)-dimensional matrix, and so we can not apply his
result since it is only for the usually GMANOVA model,
that is, they assumed the normality for noise, and he does
not considered the missing values.
Although it is sometimes important to predict the miss-

ing part in questionnaire studies, our goal in this paper is
to construct an appropriate model. To do this, we derive
an unbiased estimator of the standardized mean squared
error for the model that is defined in Section 2. More-
over, in Section 3, making good use of matrix calculations,
we develop a Cp-type information criterion in order to
select tuning parameters included in the estimator. The
proposed method is shown to be valid through a simula-
tion study in Section 4, and then the result in which the
method is applied to real data is reported in Section 5.
Some concluding remarks are presented in Section 6. Sev-
eral matrix algebras used in this paper and some proofs
are relegated to Appendix.

2 Setting and assumptions
In the following sections, we will denote 0d, 1d and Id
by a d-dimensional zero-vector, one-vector and (d × d)-
dimensional identity matrix for a positive integer d.
LetJ = {1, 2, , . . . , J} be an index set of objects andJi =

{ji1, ji2, . . . , jiM} be a subset of J arranged in ascending
order. In addition, let yijimk be a response of the k-th eval-
uation item of the jim-th object for the i-th evaluator, and
we denote the data for the i-th evaluator by an (M × K)-
dimensional matrix Yi = (yijimk)m=1,2,...,M;k=1,2,...,K . For
these data, we consider the model

yijk = μ + αj + βk + γjk + εijk ,

whereμ is a general mean, αj and βk aremain effects, γjk is
an interaction effect between the j-th object and the k-th
item, and εijk is noise. Note that we can not fully observe
the response yijk ’s , more specifically speaking, yijk is miss-
ing whenever j �∈ Ji. Let X̃i be an (M × J)-dimensional
matrix whose (m, j)-th element is 1 when j = jim and 0
otherwise. Then, we can rewrite this model as

Yi = X̄iB̄Ā + Ei, (1)

where X̄i = (1M, X̃i) ∈ R
M×(J+1), Ā = (1K , IK )′ ∈

R
(K+1)×K , and

B̄ =

⎛
⎜⎜⎜⎝

μ β1 · · · βK
α1 γ11 · · · γ1K
...

...
. . .

...
αJ γJ1 · · · γJK

⎞
⎟⎟⎟⎠ ∈ R

(J+1)×(K+1).

Let us suppose that Ei = (εi1, εi2, . . . , εiK ) =
(εijimk)m=1,2,...,M;k=1,2,...,K are independent random matri-
ces withmean E[Ei]= 0M0′

K and covariance V[ vec(Ei)]=
� ⊗ �, where � and � are an unknown (K × K)-
dimensional matrix and a known (M × M)-dimensional
matrix, respectively. This means that the k-th column εik
and the �-th column εi� of Ei have a covariance matrix
E[ εikε′

i�]= σk�� for k, � = 1, 2, . . . ,K . Although jm’s
are assigned randomly, we consider Xi deterministic for
simplicity. Note that this model includes the so-called
GMANOVA model of Potthoff & Roy [9] in a special case
when M = 1 and Ei is distributed according to some
Gaussian distribution.
To avoid redundancy of the model, we impose

J∑
j=1

αj =
K∑

k=1
βk =

J∑
j=1

γjk =
K∑

k=1
γjk = 0

on the parameter as is often used in the ANOVA model.
Since

αJ = −
J−1∑
j=1

αj, βK = −
K−1∑
k=1

βk ,

γJk = −
J−1∑
j=1

γjk , and γjK = −
K−1∑
k=1

γjk ,

we can remove this restriction. In fact, by defining
C = (IJ−1,−1J−1)′, D = (IK−1,−1K−1)′, ᾱ =
(α1,α2, . . . ,αJ−1)′, β̄ = (β1,β2, . . . ,βK−1)′ and 
̄ =
(γjk)j=1,2,...,J−1;k=1,2,...,K−1, B̄ can be rewritten as

B̄ =
(
1 0′
0 C

) (
μ β̄ ′
ᾱ 
̃

) (
1 0′
0 D′

)
,

and thus we can define

X̄i

(
1 0′
0 C

)
∈ R

M×J ,
(

μ β̄
′

ᾱ 
̃

)
∈ R

J×K ,

and(
1 0′
0 D′

)
Ā =

(
1′
K−1 1
IK−1 −1K−1

)
∈ R

K×K

by Xi, B and A, respectively.
In the following, let us denote

∑N
i=1 X′

iXi and
∑N

i=1 X′
iYi

by X′X and X′Y , respectively. Then an ordinary least
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square estimator of the model (1), that is, a minimizer of∑N
i=1 ‖Yi − XiBA‖2F , is given by

B̃ = (X′X)−1X′YA′(AA′)−1,

where ‖ · ‖F denotes a Frobenius norm, i.e, ‖T‖F =
(tr(T ′T))1/2 for a matrix T. It is easy to see that B̃ is an
unbiased estimator of B, and that, if X′X/N converges to
some positive definite matrix, B̃ is a consistent estima-
tor of B from the Chebyshev’s inequality. In addition, an
unbiased estimator of � is given by

�̂ = 1
ntr(�) − S

N∑
i=1

(Yi − XiB̃A)′(Yi − XiB̃A), (2)

where S = ∑N
i=1 tr{Xi(X′X)−1Xi�}. The details for deriv-

ing the unbiasedness of (2) are given in Appendix 2.
However, when J or K are large, the inverse of X′X

or AA′ may not exist or the variance of the estimator
may become unstable, and so we consider the ridge-type
estimator given by

B̂λ,μ = (X′X + λIJ )−1X′YA′(AA′ + μIK )−1, (3)

where λ and μ are positive constants, which are also
known as tuning parameters (see, e.g., Hoerl & Kennard
[4], Nagai [8]). Then we can obtain the predictor

Ŷi = XiB̂λ,μA. (4)

3 Deriving the Cp criterion
3.1 Preparation
Nagai [8] derived a Cp criterion for a ridge-type estimator
in the GMANOVA model. His result and ours are differ-
ent because there are missing values in the data and the
observation is an (M×K)-dimensional matrix in our case.
Moreover, we do not assume the normality of Ei.
To derive a Cp criterion, we need some preparation with

matrix calculation. Let us define

Hμ = A′(AA′ + μIK )−1A

and

Gλ = (X′X + λIJ )−1.

Note that by definition of A,

AA′ =
(
K 0′
0 IK−1 + 1K−11′

K−1

)
.

Because the inverse matrix of (1 + μ)IK−1 + 1K−11′
K−1

is given by
1

1 + μ

(
IK−1 − 1

K + μ
1K−11′

K−1

)
from (20), it follows that

Hμ = 1
(1 + μ)(K + μ)

(
H̃μ 0
0′ K(1 + μ)

)
, (5)

where H̃μ = (K + μ)IK−1 + μ1K−11′
K−1.

Next, we see that

Xi = (1M, X̃i)

(
1 0′
0 C

)
= (1M, X̃iC)

and then X′X can be expressed as
N∑
i=1

(
M 1′

MX̃iC
C′X̃′

i1M C′X̃′
i X̃iC

)
.

Let us define

δ = (δ1, δ2, . . . , δJ )′ =
N∑
i=1

X̃′
i1M. (6)

Note that δj represents the number of times such that
the j-th object is assigned and 
 = ∑N

i=1 X̃′
i X̃i is a diag-

onal matrix whose (j, j)-th element is δj. From (18) in
Appendix 1, Gλ can be expressed as

Gλ =
⎛
⎝ (NM+λ)+δ′CG̃−1

λ C′δ
(NM+λ)2

δ′CG̃−1
λ

NM+λ

G̃−1
λ C′δ

NM+λ
G̃−1

λ

⎞
⎠ , (7)

where

G̃λ = C′
(


 − 1
NM + λ

δδ′
)
C + λIJ−1.

Let us define 
̃ = 
− (NM+λ)−1δδ′. Then, from (19),
we see that


̃−1 = 
−1 + 1
λ
1J1′

J , (8)

since 
−1δ = 1J and δ′1J = NM. Moreover, by using (19)
again, we have

G̃−1
λ = 1

λ
IJ−1 − 1

λ2
C′

(

̃−1 + 1

λ
CC′

)−1
C.

Let 
−J ∈ R
(J−1)×(J−1) be the sub-matrix of 
 made by

removing J-th column and row of 
, and 
† = 
−1
−J +

λ−1IJ−1. Note that the (j, j)-th element of 
† is given by
δ−1
j + λ−1 for j = 1, 2, . . . , J − 1. Then 
̃−1 + λ−1CC′ can
be expressed as(


† + λ−11J−11′
J−1 0

0′ δ−1
J + λ−1J

)

from (8). Let us define

P = 
−J (
−J + λIJ−1)
−1. (9)

Note that 
†−1 = λP. Then the inverse matrix of 
† +
λ−11J−11′

J−1 can be expressed as


†−1 − 
†−11J−11′
J−1


†−1

λ + 1′
J−1


†−11J−1

=λ

(
P − P1J−11′

J−1P
1 + tr(P)

)
.



Umezu et al. Pacific Journal of Mathematics for Industry  (2016) 8:5 Page 4 of 9

In this equality, we just use 1′
J−1


†−11J−1 = λtr(P).
Finally, we obtain that

G̃−1
λ = IJ−1 − P

λ
+ P1J−11′

J−1P
λ(1 + tr(P))

− δJ1J−11′
J−1

λ(λ + JδJ )
. (10)

3.2 Main result
Now, we can derive the Cp criterion as an unbiased
estimator of a standardized mean squared error (MSE)
defined by

N∑
i=1

E
[
vec(Ŷi − E[Yi] )′(� ⊗ �)−1vec(Ŷi − E[Yi] )

]
,

where Ŷi is the predictor defined in (4). From (21), this is
equivalent to

N∑
i=1

E
[
tr

{
(Ŷi − E[Yi] )′�−1(Ŷi − E[Yi] )�−1

}]
.

Because E[Yi]= Yi − Ei and

E[ tr{�−1(Yi − Ŷi)′Ei}]
=E[ tr{�−1E′

iEi}]−E[ tr{�−1Ŷ ′
i Ei}] ,

the MSE can be rewritten as
N∑
i=1

E[ {tr{(Yi − Ŷi)′�−1(Yi − Ŷi)�−1}]

−
N∑
i=1

E[ tr(E′
i�

−1Ei�−1)]

+ 2
N∑
i=1

E[ tr(Ŷ ′
i�

−1Ei�−1}] . (11)

By using (21) and V[ vec(Ei)]= � ⊗ �, the second term
of the right-hand side in (11) can be reduced toNMK since

E[ tr(E′
i�

−1Ei�−1)]
=E[ vec(Ei)′(�−1 ⊗ �−1)vec(Ei)]
=tr(IM ⊗ IK )

=MK .

Next, we evaluate the third term of the right-hand side
in (11). From (3) and the definition of the model in (1), we
have

Ŷi =
N∑
h=1

XiGλX′
hYhHμ

= XiGλX′XBAHμ +
N∑
h=1

XiGλX′
hEhHμ.

Because the first term of the right-hand side in this
equality is non-stochastic and Ei’s are independent, we see
from (22) that

E[ tr(Ŷ ′
i�

−1Ei�−1)]

=
N∑
h=1

E[ vec(Eh)′(Hμ�−1 ⊗ XhGλX′
i�

−1)vec(Ei)]

=tr{(Hμ�−1 ⊗ XiGλX′
i�

−1)(� ⊗ �)}
=tr(Hμ)tr(GλX′

iXi).

Thus the third term of the right-hand side in (11) is
reduced to 2tr(Hμ)tr(GλX′X). From (5), we have

tr(Hμ) = 1
(1 + μ)(K + μ)

{tr(H̃μ) + K(1 + μ)}

= K2 + 3Kμ − 2μ
(1 + μ)(K + μ)

. (12)

On the other hand, by the definition ofGλ in (7), we have
GλX′X = IJ − λGλ and

tr(Gλ) = 1
NM + λ

+ δ′CG̃−1
λ C′δ

(NM + λ)2
+ tr(G̃−1

λ )

from (7). Since tr(P1J−11′
J−1P) = tr(P2), the last term

tr(G̃−1
λ ) is reduced to

J − 1 − tr(P)

λ
+ tr(P2)

λ(1 + tr(P))
− δJ (J − 1)

λ(λ + JδJ )

from (10). Moreover, by a simple calculation, we have

δ′C1J−1 = (NM + λ) − (λ + JδJ ),
δ′CP1J−1 = (NM + λ) − (λ + δJ )(1 + tr(P)),

and

δ′C(IJ−1 − P)C′δ
=δJ (J − 1)(λ + δJ )

− λ(λ + δJ )
2(NM − JδJ )tr(P).

Then, it follows that

λδ′CG̃−1
λ C′δ

=(NM + λ)2
(

1
1 + tr(P)

− δJ
λ + JδJ

)
− λ(NM + λ),

and thus we have

tr(GλX′X) = f (P) + JδJ
λ + JδJ

, (13)

where

f (P) = tr(P) + tr(P) − tr(P2)
1 + tr(P)

. (14)

Combining all the above, we obtain the following
theorem:
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Theorem 1 An unbiased estimator of MSE in (11) is
given by

N∑
i=1

tr{(Yi − Ŷi)′�−1(Yi − Ŷi)�−1} − NMK

+ 2
(
f (P) + JδJ

λ + JδJ

)
K2 + 3Kμ − 2μ
(1 + μ)(K + μ)

,

where δj, Ŷi, P and f (P) are defined in (6), (4), (9) and (14),
respectively.

Our result coincides with Nagai [8] in the special case
whenK = 1. In this case, we can interpret ourmodel (1) as
usual multivariate linear regression model except for the
missing of the data.
As a result, we propose the following index as a Cp-type

information criterion:

Cp =
N∑
i=1

tr{(Yi − Ŷi)′�−1(Yi − Ŷi)�̂−1} − NMK

+ 2
(
f (P) + JδJ

λ + JδJ

)
K2 + 3Kμ − 2μ
(1 + μ)(K + μ)

, (15)

where �̂ is an unbiased estimator of � defined in (2).
By minimizing the Cp in (15), we can obtain the optimal
values of the tuning parameters (λ,μ).

4 Simulation study
In this section, we conduct some simulation studies to
check the performance of the tuning parameter selection
based on Cp in (15). The performances for Cp and CV are
compared.
Concretely speaking, we assessed the performances in

terms of the prediction squared error (PSE), that is,

Ẽ
[
(Ỹi − XiB̂λ̂,μ̂A)′�−1(Ỹi − XiB̂λ̂,μ̂A)�̂−1

]
, (16)

where Ỹi is the copy of Yi, λ̂ and μ̂ are the values of the tun-
ing parameters which minimize each of the criteria, and
�̂ is an unbiased estimator of � given by (2). In addition,
Ẽ denotes the expectation with respect to only Ỹi. The
expectation in PSE is evaluated using an empirical mean of
n (= 1, 000) tuples of the test data {(Ỹi, X̃i); i = 1, 2, . . . , n}
and we conclude that the criterion giving the small value
of the PSE is better. Moreover, we checked the standard
deviation for difference between the values of PSE given
by two criteria, because the performance of each crite-
rion may almost be the same when it is large, even if the
difference between the values of PSE are large. Thus, we
conclude that the difference is significant when the value
of the standard deviation is small. We also checked the
computation time (sec) to compute Cp and CV for each
value of the tuning parameters as a secondary index for
the assessment.

The simulation settings were as follows. First, we made
(M × K)-dimensional matrices Xi (i = 1, 2, . . . ,N)

by the sampling uniformly without replacement from
{1, 2, . . . , J}. We then made Yi based on the model in (1)
for each i = 1, 2, . . . ,N , and rounded so that the ele-
ments of Yi were in {1, 2, . . . , 5}. Next, we used � =
(0.5|i−j|)i,j=1,2,...,K and � = (1 − ρ)IM + ρ1M1′

M with
a fixed ρ. This matrix � is known as an intra-class cor-
relation matrix and it represents correlations among the
rows of Yi. We used it as one of the simplest matrices
appropriate for representing correlations among objects.
Note that while we use the intra-class correlation matrix
here, our theory does not depend on any specific struc-
ture for �. The true parameters α = (α1,α2, . . . ,αJ−1)′,
β = (β1,β2, . . . ,βJ−1)′, 
 = (γjk)j=1,2,...,J−1;k=1,2,...,K−1
were drawn from

α ∼ N(0, 10−3
IJ−1), β ∼ N(0, 10−3

IK−1),

and


 ∼ N(0, 10−3
IK−1 ⊗ IJ−1),

where Iq = Iq + 1q1′
q for an positive integer q, and μ = 3.

In this case, we can evaluate

Ntr(�) − S = NM − J (17)

in (2). The details for deriving (17) are given in
Appendix 3. Sample size N was set to 500 or 1,000, nine
cases were considered for three-tuple (J ,M,K), and fifty
simulations were conducted.
Table 1 shows the results for ρ = 0 and ρ = 0.5, and

the average and standard deviation of the PSE. Standard
deviation of the differences between the values of the PSE
(Diff) are also provided. In each case, we see that both the
average and standard deviation of PSE for Cp in (15) are
smaller than those of CV. Moreover, comparing N = 500
and N = 1, 000 with the same value of (J ,M,K), the value
of Diff is small when N = 1, 000. Thus we can say that
the difference between the values given by Cp and CV is
significant as N increases.
On the other hand, Fig. 1 shows the comparison of the

computation time to compute Cp and CV for each value
of the tuning parameters. We set M = 5 and K = 4.
On the left, we can see that the computation time for CV
increases although that for Cp is not much changed as N
or J increase. An enlarged view of the computation time
for Cp is drawn on the right. Since the difference among
lines is small, we can say that the computation time for Cp
is robust to scale changes. Moreover, the model selection
via Cp is easily implemented because Cp in (15) has a sim-
ple form. On the whole, we conclude that the Cp in (15) is
better than CV.



Umezu et al. Pacific Journal of Mathematics for Industry  (2016) 8:5 Page 6 of 9

Table 1 Comparison between Cp and CV for simulated data

ρ (J,M, K) N Cp (sd) CV (sd) Diff

0 (30, 5, 2) 500 11.726 (0.432) 12.764 (0.697) 0.516

1000 11.370 (0.369) 11.661 (0.480) 0.226

(60, 5, 2) 500 13.311 (0.713) 16.189 (1.547) 1.146

1000 12.136 (0.408) 13.003 (0.703) 0.476

(90, 5, 2) 500 14.544 (0.688) 21.219 (2.249) 1.918

1000 12.819 (0.432) 14.757 (0.835) 0.664

(30, 5, 4) 500 23.623 (0.931) 25.612 (1.391) 1.068

1000 22.411 (0.539) 22.870 (0.694) 0.326

(60, 5, 4) 500 25.642 (1.207) 31.381 (3.331) 2.484

1000 23.919 (0.715) 26.073 (1.317) 1.050

(90, 5, 4) 500 26.141 (0.835) 37.661 (4.553) 4.198

1000 24.376 (0.616) 27.986 (1.371) 1.113

(30, 10, 4) 500 43.211 (1.101) 43.525 (1.230) 0.336

1000 41.958 (0.664) 42.084 (0.663) 0.161

(60, 10, 4) 500 46.600 (1.136) 49.628 (1.929) 1.475

1000 44.857 (0.781) 45.629 (0.831) 0.408

(90, 10, 4) 500 48.550 (1.040) 56.096 (3.186) 2.735

1000 45.542 (0.956) 47.192 (0.991) 0.611

0.5 (30, 5, 2) 500 12.905 (0.670) 14.282 (1.080) 0.892

1000 12.294 (0.650) 12.609 (0.774) 0.288

(60, 5, 2) 500 15.197 (1.043) 19.896 (2.325) 1.899

1000 13.760 (0.659) 14.895 (0.752) 0.481

(90, 5, 2) 500 16.520 (0.950) 28.466 (4.101) 3.773

1000 14.553 (0.560) 17.854 (1.386) 1.101

(30, 5, 4) 500 24.779 (1.289) 26.680 (1.715) 1.126

1000 22.189 (0.644) 22.972 (0.832) 0.548

(60, 5, 4) 500 27.027 (1.295) 36.329 (4.517) 3.960

1000 24.047 (0.714) 27.204 (1.710) 1.322

(90, 5, 4) 500 28.378 (1.413) 44.593 (5.329) 4.685

1000 25.965 (0.635) 33.100 (1.840) 1.698

(30, 10, 4) 500 45.319 (1.232) 46.186 (1.577) 0.725

1000 42.442 (1.009) 42.490 (0.917) 0.491

(60, 10, 4) 500 52.135 (3.347) 56.454 (3.215) 3.110

1000 46.593 (1.320) 48.044 (1.696) 0.841

(90, 10, 4) 500 55.531 (4.301) 65.578 (4.003) 3.381

1000 48.748 (1.115) 50.934 (1.566) 1.337

5 Real data analysis
In this section, we compare the methods by applying
them to real data. In the data, objects are grouped into
three categories and we assume that the data for three
categories are independent each other. For the three cat-
egories, (N , J)’s are respectively (1884,60), (1364,21), and
(1425,44), and (K ,M) = (4, 5).

We used 1,200 samples obtained at random as training
data for each category, and the rest of the data is used as
test data. In addition, we set ρ = 0 or ρ = 0.5. Table 2
shows the PSE in (16) evaluated from the test data after
selecting the tuning parameters based on Cp and CV. Sim-
ilarly to Section 4, we observe that the criterion giving a
smaller value of the PSE is better, and so we can say that
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Fig. 1 Transition of computation time. In each figure, the horizontal axis indicates the sample size N and the vertical axis indicates the average of
computation time (sec) for each value of the tuning parameters. On the left, the solid and the dashed line represent the average of computation
time via Cp and CV, respectively. An extended figure of the average of computation time via Cp is drawn on the right

the tuning parameter selection based on Cp is superior to
that of CV. Looking at the result for Cp, the value of the
PSE with ρ = 0.5 is small in categories 1 and 3, and the
value of the PSE with ρ = 0 is small in category 2. Thus
it is suggested that the correlations among the objects in
category 2 are smaller than those of other categories. Note
that there is no significant difference of the results for Cp
and CV in category 2. It is because the size of test data is
small compared to that in categories 1 and 3.

6 Concluding remarks and future work
In this paper, we have considered an appropriate model
and estimating method in a questionnaire study and
derived the Cp criterion to choose the tuning parameters
included in the estimator. More precisely, using a dummy
matrix representing the existence of the missing values,
we have constructed a model which can be interpreted as

Table 2 Comparison between Cp and CV for real data

ρ category Cp CV

0 1 21.433 22.239

2 20.323 20.364

3 19.989 20.177

0.5 1 19.861 20.390

2 20.523 20.566

3 19.000 19.221

an extension of the GMANOVA model of Potthoff & Roy
[9] for three-dimensional array data. We have explicitly
evaluated the penalty term in theCp without assuming the
normality of the noise and shown that it becomes a simple
form. Through the simulation study and real data analysis,
we have confirmed the usefulness of the derived Cp. This
criterion has a high prediction accuracy and low compu-
tational costs compared to CV because it can be expressed
by a simple form explicitly.
It is well known that predicting a missing part is impor-

tant when we construct a recommendation system, which
is sometimes required in a recent questionnaire study or
WEB survey. However, it is in general difficult to evaluate
the prediction accuracy for methods such as collabora-
tive filtering or matrix completion. For this problem, by
extending the method in this paper to a model which
contains a random effect in the evaluators, it might be
possible to draw common statistical inferences, including
the evaluation of the prediction accuracy.
In the future, it is expected that similar results will be

obtained for more complex models because the model
we considered has a particular structure for Xi and A. In
addition, it will be necessary to treat the case where Xi is
random, � is unknown or there exist correlations among
the categories in order to use more flexible models.

Appendix 1: Matrix algebra
Here, we describe some matrix algebra that we have
used in this paper. All the proofs can be found in
Harville [3].
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First, we describe two matrix inversion formulae. Let
A ∈ R

p×p, B ∈ R
p×q, and C ∈ R

q×q, and assume that A is
non-singular. Then

(
A B
B′ C

)−1

=
(
A−1 + A−1BD−1B′A−1 −A−1BD−1

−D−1B′A−1 D−1

)
(18)

if and only ifD = C−B′A−1B is non-singular. In addition,
assume that C is non-singular. Then

(A + BCB′)−1

=A−1 − A−1B(C−1 + B′A−1B)−1B′A−1 (19)

if and only if C−1 + B′A−1B is non-singular. This is also
known as Woodbury’s formula, and in the special case
where A = αIp, B = b ∈ R

p, and C = β ∈ R such that
α �= 0 and α + βb′b �= 0, we have

(αIp + βbb′)−1 = 1
α

(
Ip − β

α + βb′b
bb′

)
(20)

Next, we describe the relationship between tr and vec
operators. For matrices A ∈ R

p×q, B ∈ R
q×q, and C ∈

R
p×p, we have

tr(A′CAB′) = vec(A)′(B ⊗ C)vec(A). (21)

From (21), we can immediately see that

tr(D′A′CAB′) = vec(A)′(DB ⊗ C)vec(A) (22)

for matrices A, B, C defined in (21), and D ∈ R
q×q.

Appendix 2: Unbiasedness of (2)
Noting that A′(AA′)−1A = IK by the definition of A, it
follows that

Yi − XiB̃A = Ei −
N∑
h=1

Xi(X′X)−1X′
hEh. (23)

In addition, for an (M × M)-dimensional matrix T, we
can see that

E[E′
iTEi]= tr(T�)�. (24)

In fact, the (h, l)-th element of E′
iTEi is given by ε′

ihTεil
for h, l = 1, 2, . . . ,K , and thus we have

E[ ε′
ihTεil]= tr(TE[ εilε′

ih] ) = tr(T�)σlh.

This and the symmetry of � imply (24). From (23), (24),
and the independence of Ei, we have

N∑
i=1

E[ (Yi − XiB̃A)′(Yi − XiB̃A)]

=
N∑
i=1

E[E′
iEi]−2

∑
i,h

E[E′
hXh(X′X)−1X′

iEi]

+
∑
i,h,l

E[E′
hXh(X′X)−1X′

iXi(X′X)−1X′
lEl]

=Ntr(�)� −
N∑
h=1

tr{Xk(X′X)−1X′
h�}�

={Ntr(�) − S}�.

This completes the proof.

Appendix 3: Derivation of (17)
By the same argument in Section 3, we see that (X′X)−1

can be expressed as

(
J−2tr(
−1) J−11′

J−1Q
J−1Q′1J−1 R

)
,

where Q = 
−1
−J − J−1tr(
−1)IJ−1 and R =

(C′C)−1C′
−1C(C′C)−1. Then we have

Xi(X′X)−1X′
i

= 1
J2
tr(
−1)1M1′

M + 1
J
X̃iCQ′1J−11′

M

+ 1
J
1M1′

J−1QC′X̃′
i + X̃iCRCX̃′

i .

Note that CQ′1J−1 = (
−1 − J−1tr(
−1)IJ )1J and
CRC = (IJ − J−11J1′

J )

−1(IJ − J−11J1′

J ) by a simple cal-
culation, and that X̃i1J = 1M. Hence, Xi(X′X)−1X′

i is
reduced to X̃i
−1X̃′

i and we see that this is a diagonal
matrix. Finally, since � = (1 − ρ)IM + ρ1M1′

M and

N∑
i=1

tr{Xi(X′X)−1X′
i1M1′

M}

=
N∑
i=1

tr{X̃i

−1X̃′

i1M1′
M} =

N∑
i=1

1′
MX̃i


−1X̃′
i1M

=
N∑
i=1

tr{X̃i

−1X̃′

i} = J ,
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we obtain

N∑
i=1

tr{Xi(X′X)−1X′
i�}

=(1 − ρ)

N∑
i=1

tr{Xi(X′X)−1X′
i}

+ ρ

N∑
i=1

tr{Xi(X′X)−1X′
i1M1′

M}

=(1 − ρ)J + ρJ = J .

This and tr(�) = M imply (17).
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