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An algorithm for general infinite horizon
lot sizing with deterministic demand
Milan Horniaček

Abstract

We present an algorithm for solving an infinite horizon discrete time lot sizing problem with deterministic
non-stationary demand and discounting of future cost. Besides non-negativity and finite supremum over infinite
horizon, no restrictions are placed on single period demands. (In particular, they need not follow any cyclical pattern).
Variable procurement cost, fixed ordering cost, and holding cost can be different in different periods. The algorithm
uses forward induction and its essence lies in the use of critical periods. Period j following t is the critical period of t if
satisfying demands in any subset of the set of periods between t and j, including j and excluding t, from an order in t is
not more expensive than satisfying it from an order in a later period and j is the last period with this property. When
deciding whether to place an order in period t, all demands from t to its critical period are taken into account.

Keywords: Inventory, Lot sizing, Non-cyclical deterministic demand, Discounting of future cost, Forward induction,
Critical period

1 Introduction
Firms’ activities are dynamic in their nature and condi-
tions for them can change. Therefore, dynamic models
for optimization of inventories are needed. This require-
ment is satisfied (within the class of deterministic models)
by dynamic discrete time lot sizing models with deter-
ministic non-stationary demand. (See ([3], Chapter 4) for
their description). Nevertheless, these models have finite
horizon. This is usually justified by life-cycle of the good
that is purchased ([3], p. 92). Firms, however, usually do
not have an upper bound on their life time. Thus, infi-
nite horizon discrete time models are more appropriate
for analysis and optimization of their activities, including
inventory management. Moreover, a repetition of an opti-
mal inventory strategy computed from a finite horizon
program can lead to suboptimal behavior in models with
infinite horizon. (See ([1], subsection 2.1) for an example).
Therefore, the use of finite horizon discrete time models
of dynamic lot sizing with deterministic non-stationary
demand should be supplemented by the use of infinite
horizon discrete time models of dynamic lot sizing with
deterministic non-stationary demand, keeping the usual
assumptions of the former, namely periodic review of
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inventory (at the beginning of a period), zero lead time,
impossibility of backorders. Since algorithm for an infi-
nite horizon lot sizing with deterministic demand without
a cyclical pattern does not exist, our study is necessary in
order to help firms to improve their inventory policy by
solving subsequent finite horizon inventory optimization
problems in a way consistent with inventory optimization
over the infinite time horizon.
In the present paper we develop an algorithm for com-

puting optimal inventory strategy for a general infinite
horizon lot sizing with deterministic demand. We work
with discounting of future cost (which is a common
approach inmicroeconomics) rather than with the limit of
average cost as the length of the time horizon approaches
infinity. (See ([3], Chapter 10) for characterization of the
latter approach). Besides non-negativity and finite supre-
mum over infinite horizon, no restrictions are placed on
single period demands. (In particular, they need not follow
any cyclical pattern. Therefore, the algorithm developed
in [1] cannot be used here). Variable procurement cost,
fixed ordering cost, and holding cost can be different in
different periods.

2 Methods
Unlike algorithms for finite horizon lot sizing with deter-
ministic demand [6, 7], our algorithm is not based on
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dynamic programming. It uses (similarly to [7]) forward
induction but its essence lies in the use of critical periods.
A period j following period t is the critical period of t if
(a) satisfying demand in any subset of the set of periods{
t + 1, . . . , j

}
from an order in t (provided that an order

is made in period t to satisfy demand in period t) is not
more expensive than satisfying it from an order in a period
k ∈ {

t + 1, . . . , j
}
(from which it can be satisfied) and (b) j

is the last period with this property. If such period j does
not exist, then the critical period of t is t. (If the critical
period is the same for period t and several consecutive
periods following it, then an order is placed only in period
t). When deciding whether to place an order in period
t, all demands from t to its critical period are taken into
account. Thus, for each period t, we determine the last
period in which demand is served from an order in t, not,
as in [7], the period in which an order satisfying demand in
t is placed. (It is worth noting that a backward induction,
as in [6], cannot be used in our infinite horizon model).
This speeds up computation of an optimal inventory strat-
egy. Each period is considered as a candidate for making
an order only once. If it fails the test, it is not considered
any more. Nevertheless, if it passes the test, it can be elim-
inated when some later period passes the test. Once it is
eliminated, it is not considered any more. When we get to
the first period following the critical period of t, in which
an order is made, we can be sure that the following com-
putations will not change quantity ordered in the critical
period of t and preceding periods. Thus, we can compute
optimal ordered quantities for any finite number of con-
secutive periods without computing them for the rest of
the time horizon of the model. That is, our algorithm for
general infinite horizon decision problem (that, in its gen-
eral form, can never be solved in real life) is suitable for
solving subsequent finite horizon decision problems in a
time consistent way (in the sense that solutions of several
subsequent decision problems with finite time horizons
together give solution to the union of them).
Throughout the paper,N denotes the set of positive inte-

gers and � the set of real numbers. We endow each finite
dimensional real vector space with the Euclidean topology
and each infinite dimensional Cartesian product of finite
dimensional real vector spaces with the product topology.

3 Results and discussion
3.1 Inventory optimization problem
The time horizon of the optimization problem isN. A firm
wants to minimize sum of discounted total cost of satisfy-
ing demands for a single input. It uses the same discount
factor δ ∈ (0, 1) in each period. (It does not discount the
first period).

Remark 1 In order to avoid misunderstanding, we stress
that, in our deterministic model, discounting of future cost

does not express uncertainty about them. (We briefly dis-
cuss in Remark 5 how to take uncertainty about model
parameters into account). It expresses the fact that the
present value of future cost is lower than its actual amount
in the future. The discount factor can be approximated
using the weighted average of the interest rates (per the
time equal to the length of period in the model) for firm’s
short-term loans financing material expenditures or non-
investment expenditures. When this weighted average of
interest rates (expressed as a decimal number, not in per-
centage points) is i, then δ = 1

1+i . Of course, these interest
rates can also vary. A model with the same discount factor
for each period is suitable when a firm has little infor-
mation about future development of short-term interest
rates. If it has such information, the model can be modified
by allowing for different discount factors in different peri-
ods. Except for working with different discount factors, the
algorithm given in the following section will be unchanged.
If the supremum of values of the discount factor over all
periods is less than one, then objective function (2) is well
defined and program (2)-(6) has an optimal solution.

Durability of the input is T ∈ N\ {1} periods (i.e., an
input purchased in period t can be used in periods t, t+1,
. . . , t + T − 1). For each t ∈ N, dt ≥ 0 is deterministic
demand for the input in period t, Ct ≥ 0 is unit purchas-
ing cost of the input in period t, ht ≥ 0 is the unit holding
cost in period t (i.e., cost of storing one unit of the input
between periods t and t+1), and Kt ≥ 0 is the fixed order-
ing cost in period t (a firm incurs it if and only if it makes
an order in period t). We assume that

sup
t∈N

dt < ∞, sup
t∈N

Ct < ∞, sup
t∈N

ht < ∞, and sup
t∈N

Kt < ∞.

(1)

Denote by xt ≥ 0 the stock of the input at the beginning
of period t , before the decision to order or not to order is
made. We assume that, using its stock of the input to sat-
isfy demand, a firm proceeds from its oldest to its newest
part. We also assume that 0 ≤ x1 ≤ ∑T−1

t=1 dt and its com-
position with respect to vintages of the input is such that
it can be fully used in periods 1 ,. . . ,T − 1. Let qt ≥ 0
be an order in period t and let αt ∈ {0, 1} satisfy αt = 1
if an order is made in period t. Then a firm solves the
minimization program

min
∑

t∈N δt−1Ctqt +
∑

t∈N:αt=1
δt−1Kt

+
∑

t∈N δt−1ht (xt + qt − dt) (2)

subject to

xt + qt ≥ dt , ∀ t ∈ N, (3)
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0 ≤ qt ≤ αt

(∑t+T−1

j=t
dj − xt

)
, ∀ t ∈ N, (4)

xt+1 = xt + qt − dt , ∀ t ∈ N, (5)

αt ∈ {0, 1} , ∀ t ∈ N. (6)
The objective function (2) is the sum of discounted

purchasing cost, discounted fixed ordering cost, and dis-
counted cost of holding inventory. (Taking into account
(1), it is well-defined and continuous). We cannot omit
purchasing cost from the objective function because cost
is discounted and unit purchasing cost of the input can be
different in different periods. Constraint (3) ensures that
demand is satisfied in each period. Constraint (4) ensures
that ordered quantities are non-negative and (together
with the assumption on the order of using parts of a stock
and the assumption on x1) that in each period a firm pur-
chases only an amount of the input that can be used before
its durability expires. It also ensures that an order is made
in period t only if αt = 1. (Clearly, in each optimal solution
of program (2)-(6) an order is made in period t if αt = 1).
Eq. (5) describes dynamics of stock of the input.
A strategy is a sequence s = {

(αt , qt)
}
t∈N. It is feasi-

ble if it satisfies constraints (3)-(6). It is optimal if it solves
program (2)-(6).
Clearly, the set of feasible strategies is non-empty. (It

is enough to set, for each t ∈ N, qt = max {dt − xt , 0}
and αt = 1 if and only if qt > 0). It is closed because
constraints (3) and (4) are expressed by weak inequalities
and (5) by equality between terms continuous in compo-
nents of a strategy. It is also compact because it is a subset
of space

({0, 1} × [
0,T supt∈N dt

])∞ that is compact by
Tychonoff theorem. Thus, as the objective function is
continuous, program (2)-(6) has an optimal solution. In
the following subsection we propose an algorithm for its
solution.

Remark 2 Following the tradition established in opera-
tional research literature by [6] and [7], we analyze pur-
chasing of one input in a deterministic model. Of course,
there are inventory models of multi-echelon supply chains
(e.g. [4]). These include also production of several inputs.
Since production units are part of a modelled system, there
is no fixed ordering cost. Such models are certainly very
useful. Nevertheless, they can be applied only to firms
that produce inputs for themselves (e.g. telecommunication
firms producing electronic components) or associations of
firms that include both producers and users of inputs. (In
the latter case, however, if such association includes sev-
eral producers and/or several users of an input, it includes
several firms operating on the same side of a market -
i.e. potential competitors. Therefore, it can face objections
from anti-trust authorities). A model of purchase of one

input is useful for firms that buy inputs in separated mar-
kets and cannot (significantly) effect their prices because
their demand is small relative to the size of the market.
Such firms can but need not be small with respect to the
market for their output. (For example, a firm producing
washing machines can be one of a few oligopolists in its
output market but its demand for steel can be small rel-
ative to the size of the market). Despite this, ordering of
input requires some administrative procedure, so a special
kind of transaction cost, called fixed ordering cost, has to
be included in the objective function of these models.

3.2 Algorithm
For each t ∈ N let

Wt =
{

j ∈ {t + 1, . . . t + T − 1} |(
Ct + ∑j−1

k=t δ
k−thk

)
dj ≤ δj−t (Kj + Cjdj

)

}

,

(7)

Vt =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

j ∈ Wt\ {t + 1} |(
Ct + ∑i−1

k=t δ
k−thk

) ∑i+n
k=i dk

≤ δi−t
(
Ci

∑i+n
k=i dk + Ki

)

∀ i ∈ {
t + 1, . . . , j − 1

}
,

∀ n ∈ {
1, . . . , j − i

}

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (8)

rt = maxVt , if Vt �= ∅,
rt = t + 1, if Vt = ∅ & t + 1 ∈ Wt .
rt = t, if Vt = ∅ & t + 1 /∈ Wt . (9)

Wt is the set of periods with the property that it is not
cheaper to satisfy demand in them from an order in them
than from an order in period t. Vt is the set of elements
j ∈ Wt with an additional property that it is not more
expensive to satisfy demands in any set of successive peri-
ods belonging to

{
t + 1, . . . , j

}
from an order in period t

than from an order in some period in
{
t + 1, . . . , j − 1

}
.

We call rt the critical period of period t. If Vt is nonempty,
rt is its maximal element. If Vt is empty but Wt contains
t + 1, then rt = t + 1. If Vt is empty and Wt does not
contain t + 1, we formally set rt = t. Thus, rt �= t is the
critical period of period t if satisfying demands in any sub-
set of the set of periods between t and j, including j and
excluding t, from an order in t is not more expensive than
satisfying it from an order in a later period and j is the
last period with this property. (See also Remarks 2 and 3
below).

Remark 3 It is not hard to see from (8) that, if j ∈
Wt\ (Vt ∪ {t + 1}), then k /∈ Vt for each k > j. Thus, (tak-
ing into account Remark 4) in order to determine rt when
t+2 ∈ Vt, it is enough to find the first period i with i > t+2
and i /∈ Vt and set rt = i − 1.
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Remark 4 If j ∈ Vt then i ∈ Vt for each i ∈{
t + 2, . . . , j − 1

}
and t + 1 ∈ Wt. Take (arbitrary) j ∈ Vt

and i ∈ {
t + 1, . . . , j − 1

}
. With respect to Remark 2, if

i ∈ Wt and i > t + 1 , then i ∈ Vt. Thus, it is enough to
show that i ∈ Wt. Suppose that i /∈ Wt. Then, using (7),

(
Ct +

∑i−1

k=t
δk−thk − δi−tCi

)
di > δi−tKi.

Since Ki ≥ 0 and δ > 0, the above inequality implies that
di > 0 and Ct + ∑i−1

k=t δ
k−thk − δi−tCi > 0. From this and

di+1 ≥ 0 it follows that
(
Ct +

∑i−1

k=t
δk−thk − δi−tCi

)
(di + di+1) > δi−tKi.

Comparing this with definition of Vt in (8), we conclude
that j /∈ Vt, which is a contradiction. Hence, i ∈ Wt.

We derived the critical period as follows. Clearly, if for
period

j ∈ {t + 1, . . . t + T − 1}
we have j /∈ Wt (i.e., if it is cheaper to satisfy demand in
period j from an order in this period than from an order
in period t), then demand in period j will not be satisfied
from an order in period t (it will be satisfied from an order
in some period from the set

{
t + 1, . . . , j

}
). Thus, only a

period belonging toWt can be the critical period of period
t. Nevertheless, for some period j ∈ Wt\ {t + 1}, if the
fixed ordering cost in some period i ∈ {

t + 2, . . . , j − 1
}
is

incurred in order to satisfy demands in periods i, . . . , i+n
for some n ∈ {

1, . . . , j − i
}
, then (with respect to hold-

ing cost in periods t,. . . , i − 1) it can be cheaper to cover
demands in periods i, . . . , i + n from an order in i than
from an order in t. If this happens, then demands in peri-
ods i, . . . , i + n will not be satisfied from an order in t.
Thus, period j cannot be the latest period following t with
the property that satisfying demands in any subset of the
set of periods between t and j, including j and excluding
t, from an order in t is not more expensive than satisfy-
ing it from an order in a later period. That is, j cannot be
the critical period of period t. In the algorithm, this situ-
ation is formally expressed as j /∈ Vt . Hence, (if rt �= t)
only a period belonging to Vt ∪ {t + 1} can be the critical
period of period t. Since rt is the latest period following
or equal to t with the property that satisfying demands in
any subset of the set of periods between t and j, including
j and excluding t, from an order in t is not more expensive
than satisfying it from an order in a later period, if Vt is
nonempty, we set rt = maxVt . It remains to determine rt
in the case when Vt is empty. Clearly, if t + 1 ∈ Wt , then
t + 1 ∈ Vt . (For j = t + 1 there does not exist period i
with t + 1 ≤ i ≤ j− 1. This is the reason why we excluded
period t+1 in computation ofVt). Thus, if Vt is empty but
t + 1 ∈ Wt , then rt = t + 1. If Vt is empty and t + 1 /∈ Wt

(i.e., it cannot be optimal to cover demand in t + 1 from
an order in t), we formally set rt = t.
The practical meaning of the critical period of period

t lies in the fact that it is the last period that can affect
optimality of an ordering decision in period t. That is,
in deciding demands in which periods will be satisfied
from an order in period t, we need not consider peri-
ods following the critical period of period t. The same
holds for each period t + 1, . . . , rt . Thus, in order to
compute a quantity of the input ordered in period t, we
need to know only demands and cost in each period
j ∈ {t, . . . , max {rk | k ∈ {t, . . . , rt}}} and demands and
cost needed to compute rk , k ∈ {t, . . . , rt}. We can obtain
other data when we need them for computations.
Symbol mt stands for the first period following t in

which an order is made. In the algorithm, in order to
shorten its description, we formally allow for the case
mt = t. In the description of the algorithm below, values
without asterisk are preliminary (they can be changed by
later computations and decisions) and values with aster-
isk are final. Arrow (→) stands for assignment command
(e.g., a → b means that a is assigned to symbol b);
we use it when the equality sign (=) is false from the
mathematical point of view or it could lead to a confusion.
Since minimization program (2)-(6) has infinite hori-

zon, the algorithm for solving it is open-ended. Neverthe-
less, when it determines values α∗

t and q∗
t for some t ∈ N,

we already know optimal purchased quantities for all peri-
ods 1, . . . , t. Thus, in period k ∈ N a firm can compute
optimal values till period k+n for some n ∈ N, use them in
its purchases, and continue with inventory optimization
for another finite set of successive periods later on.
The algorithm identifies a sequence of periods {tn}n∈N

such that t1 = 1 and tn+1 ≥ rtn + 1 for each n ∈ N (t1 = 1
is set in step 1 and switching from tn to tn+1 takes place
in steps 7, 8, and 9). Each iteration of the algorithm starts
with setting a new value of t. The n-th iteration starts with
setting t = tn and ends with setting t = tn+1. (In the exam-
ple below we compute results for the first two iterations).
Iteration n is non-trivial if tn+1 > tn + 1. (Iteration n is
trivial if demand in period tn is satisfied from the stock of
the input in period tn, or rt = t, i.e. satisfying demands in
any finite set of successive periods after tn from an order
in tn is more expensive than satisfying them from an order
in a later period. See steps 2 and 3). For iteration n, which
is non-trivial, the symbol mt either equals t or it denotes
the first period after t = tn (but no later than rtn ) in which
an order is made. (In order to simplify notation, we use
in this explanation symbol mt instead of mtn ). It changes
in the process of computations. We successively deter-
mine the cost minimizing way of satisfying demands since
period tn up to period r� for � = tn + 1, . . . , rtn . In doing
so, we omit values of � for which r� ≤ rmt (i.e., periods
� such that demands in periods �, . . . , r� can be satisfied
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Algorithm 1 Developed algorithm
Step 1. Let t = 1. Go to step 2.
Step 2. If dt ≤ xt , then α∗

t = 0, q∗
t = 0, xt+1 = xt − dt , t + 1 → t, and return to step 2. Otherwise, go to step 3.

Step 3. Let α∗
t = 1. ComputeWt . IfWt �= ∅, compute rt . IfWt = ∅ orWt �= ∅ but rt = t, then q∗

t = dt − xt , xt+1 = 0,
t + 1 → t, and return to step 3. Otherwise, qt = dt − xt , � = t + 1,mt = t, and go to step 4.

Step 4. If � > rmt , go to step 7. If � ≤ rmt , then computeW�. IfW� �= ∅, compute r�. Ifmt = t,W� = ∅ orW� �= ∅ but
r� ≤ rmt , then α∗

� = 0, q∗
� = 0, qt + d� → qt , � + 1 → �, and return to step 4. Ifmt > t,W� = ∅ orW� �= ∅ but r� ≤ rmt,

then α∗
� = 0, q∗

� = 0, � + 1 → �, and return to step 4. If r� > rmt , then go to step 5.
Step 5. If � ≤ rmt and � ≤ rt + 1, then go to step 6. Otherwise, go to step 7.
Step 6. Ifmt > t,

δ�−t
(
K� + C�

∑r�
k=�

d�

)
+

(∑rmt

k=�
δk−thk

) ∑r�
i=rmt+1

di

+
(
Ct +

∑mt−1

k=t
δk−thk

) ∑�−1

k=mt
dk

< δmt−t
(
Kmt + Cmt

∑rmt

k=mt
dk

)
+

(∑�−1

k=mt
δk−thk

) ∑rmt

k=�
dk

+δrmt+1−t
(
Krmt+1 + Crmt+1

∑r�
k=rmt+1

dk
)
, (10)

then α∗
mt = 0, q∗

mt = 0, qt = ∑�−1
k=t dk , and go to step 9. Ifmt = t and

δ�−t
(
K� + C�

∑r�
k=�

d�

)
+

(∑rt
k=�

δk−thk
) ∑r�

i=rt+1
di

<

(
Ct +

∑�−1

k=t
δk−thk

)∑rt
k=�

dk + δrt+1−t
(
Krt+1 + Crt+1

∑r�
k=rt+1

dk
)
,

(11)

then qt = ∑�−1
k=t dk and go to step 9.

Ifmt > t but (10) does not hold, ormt = t but (11) does not hold, and � < rt + 1, then α∗
� = 0, q∗

� = 0, � + 1 → �, and
go to step 4.
Ifmt > t but (10) does not hold, ormt = t but (11) does not hold, and � = rt + 1, then � + 1 → � and go to step 4.

Step 7. If � > rmt , then α∗
mt = 1, q∗

mt = qmt , q∗
t = qt , rmt + 1 → t, xt = 0, and go to step 3. Otherwise, go to step 8.

Step 8. If

δ�−t
(
K� + C�

∑r�
k=�

d�

)
+

(∑rmt

k=�
δk−thk

)∑r�
k=rmt+1

dk

+
(
Ct +

∑mt−1

k=t
δk−thk

) ∑rt
k=mt

dk

+δrt+1−t
(
Krt+1 + Crt+1

∑�−1

k=rt+1
dk

)

< δmt−t
(
Kmt + Cmt

∑rmt

k=mt
dk

)

+
(∑rt

k=mt
δk−thk

) ∑�−1

k=rt+1
dk

+δrmt+1−t
(
Krmt+1 + Crmt+1

∑r�
k=rmt+1

dk
)
, (12)

then α∗
mt = 0, q∗

mt = 0, q∗
t = qt + ∑rt

k=mt
dk , rt + 1 → t, α∗

t = 1, qt = ∑�−1
k=t dk , α� = 1, q� = ∑r�

k=�
dk ,mt = �,

� + 1 → �, and go to step 4. Otherwise, α∗
� = 0, q∗

� = 0, � + 1 → � , and go to step 4.
Step 9. If � = rt + 1, then q∗

t = qt , α∗
� = 1, � → t, qt = dt ,mt = t, � = t + 1, and go to step 4. Otherwise, α� = 1, q� = ∑r�

k=�
dk ,

� → mt , � + 1 → �, and go to step 4.

with lower or the same cost from an order in period mt
than from an order in period � - see step 4). If it is cheaper
to satisfy demands since period tn up to period r� from
orders in periods tn and � than from orders in periods
tn, mt , and rmt + 1, then we set mt = �, otherwise mt
is unchanged. If mt < rtn is unchanged when we exam-

ine all periods mt + 1, . . . rtn , we continue with periods
rtn +1, . . . , rmt . (See step 5, step 7 when � > rmt , and step 9
when � = rt+1). Ifmt is not replaced by any of these peri-
ods, we start a new iteration in period rmt + 1 (see step 7).
Thus, when we start the iteration n + 1 in period tn+1,
values of α∗

j and q∗
j for j ∈ {tn, . . . , tn+1 − 1} computed in
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iteration n minimize the sum of discounted total cost of
satisfying demands in periods j = tn, . . . , tn+1 − 1. Since
this holds also for all previous iterations, for each n ∈ N,
values α∗

j and q∗
j for j ∈ {1, . . . , tn+1 − 1} computed in iter-

ations 1, . . . , n, minimize the sum of discounted total cost
of satisfying demands in periods j = 1, . . . , tn+1 − 1.
The strategy s∗ generated by the algorithm solves pro-

gram (2)-(6). This can be seen as follows. Suppose that
there exists a feasible strategy s that gives a lower value of
objective function (2). Then, taking into account discount-
ing of cost and (1), there exists n ∈ N such that the sum
of discounted total cost of satisfying demands in periods
1, . . . , tn+1 − 1 (where tn+1 is the period in which itera-
tion n + 1 starts under s∗) under s is lower than under s∗.
This contradicts the observation in the last sentence of the
preceding paragraph.

Remark 5 Although our model is deterministic, it is use-
ful to comment on possibility to take uncertainty about its
parameters into account. First (as already noted), we need
parameters only for the current iteration of the algorithm.
The number of periods, for which we need parameters of
the model in order to complete one iteration of the algo-
rithm, is bounded from above by 2T − 1. Thus, when
making computations for an iteration of the algorithm
starting in period t, we need not worry about parame-
ters for periods after t + 2 (T − 1). Assume that actual
values of uncertain parameters in any period i will be
known only in period i. Consider making computation for
an iteration starting in period t, actual demand in which
is known and it exceeds the stock of input at the begin-
ning of period t. If we are uncertain about parameters for
(some of ) the periods t + 1, . . . , t + 2 (T − 1), we can work
with probability distributions for the uncertain parame-
ters. In (7) and (8) we replace both sides of inequalities
by their expected values. Let the current iteration start
in period t and let τ ∈ {t + 1, . . . , t + 2T − 2} be the
first period after t for which we are uncertain about some
parameter of the model. Then we end the current iteration
(as in the deterministic case) when ordered quantities in
periods t, . . . , rt are determined, we order in each period
k ∈ {t, . . . , min {rt , τ − 1}} computed quantity q∗

k , and we
start a new iteration in period j, which is the first period
aftermin {rt , τ − 1}, in which demand is not covered by the
order in any of the periods t, . . . , min {rt , τ − 1}. Ordered
quantities q∗

k , k ∈ {t, . . . , min {rt , τ − 1}}, are optimal from
the ex ante point of view (with respect to expected values
of uncertain parameters) but they can fail to be optimal
from the ex post point of view (with respect to actual val-
ues of uncertain parameters). Their ex ante optimality
stems from the fact that (i) for each period i, ri is the last
period that can affect optimality of an order decision in
period i and (ii) an iteration of the algorithm starting
in period t does not end until we compute an ordering

decision for each period i ∈ {t, . . . , rt}, taking into account
demands in periods i, . . . , ri.

Example 1 Let δ = 0.7, T = 5, x1 = 0,
d1 = 10, d2 = 20, d3 = 15, d4 = 25, d5 = 12, d6 = 14,

d7 = 9, d8 = 11, d9 = 27, d10 = 25, d11 = 28,
h1 = 1, h2 = 2, h3 = 5, h4 = 2, h5 = 3, h6 = 2, h7 = 1,

h8 = 6, h9 = 4, h10 = 6, h11 = 7,
K1 = 100, K2 = 110, K3 = 90, K4 = 50, K5 = 120,

K6 = 150, K7 = 320, K8 = 115, K9 = 80,K10 = 160,
K11 = 60,
C1 = 6, C2 = 15, C3 = 12, C4 = 7, C5 = 11, C6 = 14,

C7 = 13, C8 = 6, C9 = 8, C10 = 9, C11 = 8.
Iteration 1.
Step 1.We set t = 1 and go to step 2.
Step 2. Since d1 = 10 > x1 = 0, we go to step 3.
Step 3. We set α∗

1 = 1 and compute W1 = {2, 3} �= ∅,
V1 = {3} �= ∅, and r1 = maxV1 = 3. Since r1 > 1, we set
q1 = d1 − x1 = 10, � = 2, m1 = 1, and go to step 4.
Step 4. Since � = 2 < r1 = 3, we compute W2=∅, so we

set α∗
2 = 0, q∗

2 = 0, q1 = 30, � = 3, and return to step 4.
Step 4 again. Since � = 3 = r1, we compute W3 = ∅, so

we set α∗
3 = 0, q∗

3 = 0, q1 = 45, � = 4, and return to step 4.
Step 4 again. Since � = 4 > r1 = 3, we go to step 7.
Step 7. Since � > r1, we set α∗

1 = 1, q∗
1 = q1 = 45,

t = r1 + 1 = 4, x4 = 0, and go to step 3.
Iteration 2.
Step 3. We set α∗

4 = 1 and compute W4 = {5, 6}, V4 =
{6}, and r4 = 6. Since r4 > 4, we set q4 = d4 − x4 = 25,
� = 5, m4 = 4, and go to step 4.
Step 4. Since � = 5 < r4 = 6, we compute W5 = {6, 7},

V5 = {7}, and r5 = 7. Since r5 > r4 = 6, we go to step 5.
Step 5. Since � = 5 < r4 = 6, we go to step 6.
Step 6. Since m4 = 4 and

δ
(
K5 + C5

∑7

k=5
dk

)
+ (

δh5 + δ2h6
)
d7

= 0.7 (120 + 11 × 35) + (
0.7 × 3 + 0.72 × 2

)
9 = 381. 22

< (C4 + h4)
∑6

k=5
dk + δ3 (K7 + C7d7)

= (7 + 2) 26 + 0.73 (320 + 13 × 9) = 383. 89,

we set q4 = d4 = 25 and go to step 9.
Step 9. Since � = 5 < r4 + 1 = 7, we set α5 = 1, q5 =∑7
k=5 dk = 35, m4 = 5, � = 6, and go to step 4.
Step 4. Since � = r4 = 6, we computeW6 = {7}, V6 = ∅,

and r6 = 7. Since m4 = 5 > 4 and r6 = r5 = 7, we set
α∗
6 = 0, q∗

6 = 0, � = 7, and return to step 4.
Step 4 again. Since � = r5 = 7, we compute W7 = ∅.

Since m4 = 5 > 4, we set α∗
7 = 0, q∗

7 = 0, � = 8, and
return to step 4.
Step 4 again. Since � = 8 > r5 = 7, we go to step 7.
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Step 7. Since � = 8 > r5 = 7, we set α∗
5 = 1, q∗

5 = q5 =
35, q∗

4 = q4 = 25, t = 8, x8 = 0, and go to step 3. This
starts the third iteration.

Remark 6 The usefulness of the algorithm stems from
the fact that - to our best knowledge - there does not
exist another algorithm that can solve problem (2)-(6) by
decomposing it to a countable set of steps, without knowing
its parameters for each period in the same time. (Param-
eters of the problem for each period could be known in
the same time only if they exhibited some cycle or trend.
Our algorithm solves (2)-(6) for general parameters satis-
fying only (1) and non-negativity constraints). Perhaps, at
the first glance, it may seem that model predictive con-
trol method, which is capable of solving a wide variety
of infinite horizon problems by decomposing them into
finite horizon problems and is suitable for managing of
multi-echelon supply chains (see [4]) could solve (2)-(6).
(See, for example, [2] for survey of model predictive con-
trol method). Therefore, we show here that this is not the
case. Model predictive control method would, in general,
lead to a suboptimal ordered quantities in our determinis-
tic model. The reason is that it replaces an infinite horizon
problem with a sequence of finite horizon problems, in
which the current state of the plant is used as the ini-
tial state. From the solution of the latter only the current
period control is applied. Suppose that, in our model, this
approach leads to solving the finite horizon problem with
periods t, .., t + τ , τ ∈ N. Let j ∈ {t, . . . , t + τ } be the last
period in which the solution prescribes making an order.
Then the quantity ordered in period j covers demand in
periods j, . . . , t + τ . Nevertheless, it can happen that there
does not exist an optimal solution to problem (2)-(6) pre-
scribing such an order in period j. Moreover, if we replaced
the finite horizon problem with periods t, .., t + τ with the
finite horizon problem with periods t, .., t + τ , t + τ + 1, it
could happen that (each) optimal solution of the latter pre-
scribes ordering in period j the quantity covering demand
in periods j, . . . , t + τ , t + τ + 1 (for example, if Kt+τ+1
and/or Ct+τ+1 is high and hk, k ∈ {

j, . . . , t + τ
}
is low).

Thus, although model predictive control, especially in the
form of scenario-based model predictive control ( [4]), is
a quite efficient method for solving some inventory prob-
lems with uncertainty, it is not suitable for solving (2)-(6).
Furthermore, even in the stochastic case, the model pre-
dictive control method can give ex ante suboptimal results
if a finite horizon problem starting in period t has a time
horizon too short for computing ordered quantities in all
periods t, . . . , rt. (Compare the last sentence in the first
paragraph of Remark 5).
Moreover, there are some technical reasons why model

predictive control cannot be applied to problem (2)-(6). In
its basic form it assumes that finite horizon problems are
time invariant ( [2], p. 790). This is not the case in our

model. (On the contrary, the advantage of our model is that
it does not impose any restriction on parameters except
for their non-negativity and (1)). Schildbach and Morari
[4] do not make such assumption but they assume that
the resulting optimization problem would become con-
vex if all uncertain variables were known and fixed ( [4],
Assumption 1, p. 543). This assumption is not satisfied for
problem (2)-(6) because variable α can take only value 0
or 1.

4 Conclusions
We have developed an algorithm for solving an infinite
horizon lot sizing problem with deterministic non-
stationary demand that does not follow any regular pat-
tern. Of course, a complete solution (for the whole infinite
horizon) of such problem can never be obtained. Never-
theless, our algorithm enables us to obtain solution for a
finite number of periods (a finite number of iterations of
the algorithm), using data for these and several following
periods. (In the example in the preceding section, we com-
puted implications of the optimal strategy for first seven
periods, using data for four additional periods). The num-
ber of periods, for which we need parameters of the model
in order to complete one iteration of the algorithm, is
bounded from above by 2T − 1. We can compute implica-
tions of optimal strategy for any n ∈ N periods by carrying
out the number of iterations of the algorithm, for which
the sum of their lengths is not shorter than n.
The algorithm allows firms to set an inventory strategy

for any chosen finite number of periods that is consistent
with inventory strategies chosen optimally in the future. It
can be useful also in the analysis of more complex models
in which demands for inputs depend on strategic interac-
tion between producers of inputs and their customers (as
in [5]).
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