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Abstract

This article deals with applications of optimal control to aerospace problems with a focus on modern geometric
optimal control tools and numerical continuation techniques. Geometric optimal control is a theory combining
optimal control with various concepts of differential geometry. The ultimate objective is to derive optimal synthesis
results for general classes of control systems. Continuation or homotopy methods consist in solving a series of
parameterized problems, starting from a simple one to end up by continuous deformation with the initial problem.
They help overcoming the difficult initialization issues of the shooting method. The combination of geometric control
and homotopy methods improves the traditional techniques of optimal control theory.
A nonacademic example of optimal attitude-trajectory control of (classical and airborne) launch vehicles, treated in
details, illustrates how geometric optimal control can be used to analyze finely the structure of the extremals. This
theoretical analysis helps building an efficient numerical solution procedure combining shooting methods and
numerical continuation. Chattering is also analyzed and it is shown how to deal with this issue in practice.

Keywords: Optimal control, Pontryagin maximum principle, Optimality condition, Numerical methods, Numerical
continuation, Shooting method, Aerospace, Attitude control, Trajectory optimization, Coupled system, Chattering

1 Introduction
Generally, a space vehicle is modeled as a solid body.
The motion combines the translation of the center of
gravity (COG) defining the trajectory and the body rota-
tion around its center of gravity defining the attitude. A
usual simplification consists in assuming that the transla-
tion and the rotation motions are independent, because
the attitude time scale is often much shorter than the
trajectory time scale so that the attitude control can be
considered as nearly perfect, i.e., instantaneous or with
a short response time. With this assumption the trajec-
tory problem (also called the guidance problem) and the
attitude problem (also called the control problem) can be
addressed separately. This uncoupling of the guidance and
the control problem is valid either when the torque com-
mands have a negligible effect on the CoGmotion or when
the control time scale is much shorter than the guidance
time scale. Most space vehicles fall into one of these two
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categories. The main exceptions are atmospheric maneu-
vering vehicles such as cruise or anti-ballistic missiles and
airborne launchers. Such vehicles have to perform large
reorientation maneuvers requiring significant durations.
These maneuvers have a sensible influence of the CoG
motion and they must be accounted for a realistic tra-
jectory optimization. In these cases, the rotation and the
translation motions are coupled, the command are then
the nozzle or the flap deflections depending on the vehi-
cle control devices. For a propelled launcher, the motion
is controlled by the thrust force which is nearly aligned
with the roll axis. We call such exception problems the
attitude-trajectory or coupled problems. We refer readers
interested by aerospace missions to Section 2 for a general
introduction on the applications to aerospace missions, of
which the objective is to give a global view on how space
missions are translated into optimal control problems.
The purpose of this article is to show how to address

optimal control problems in aerospace using modern
techniques of geometric optimal control and how to build
solution algorithms based on continuation techniques. In
particular, we make a brief survey on the chattering phe-
nomenon (also called Fuller phenomenon), and explain
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how to dealt with the chattering phenomenon with
numerical continuations. The chattering phenomenon,
which appears systematically in aerospace applications
(in trajectory optimization [91] and in attitude-trajectory
optimization problems [92, 93]), is the situation where the
optimal control switches an infinite number of times over
a compact time interval.
The geometric optimal control (stated in the early 1980s

and having widely demonstrated its advantages over the
classical theory of the 1960s) and the continuation tech-
niques (which are not new, but have been somewhat
neglected until recently in optimal control) are power-
ful approaches for aerospace applications. In this article,
the main techniques of optimal control theory, including
the Pontryagin Maximum Principle, the first-order and
higher order optimality conditions, the associated numer-
ical methods, and the numerical continuation principles
will be recalled. Most mathematical notions presented
here are known by many readers, and can be skipped at
the first reading.
After recalling some applications of the geometric con-

trol techniques and the continuation in trajectory opti-
mization problems, we present detailed analyses of a
nonacademic attitude-trajectory problem that we have
studied during these years. This example deals with a
minimum time maneuver of a coupled attitude-trajectory
dynamic system. Due to the system high nonlinear-
ity and the existence of a chattering phenomenon (see
Sections 3.4 and Section 7 for details), the standard tech-
niques of optimal control do not provide adequate solu-
tions to this problem. Through this example, we will show
step by step how to build efficient numerical procedures
with the help of theoretical results obtained by apply-
ing geometric optimal control techniques. More precisely,
we will explain how the geometric control techniques are
used to analyze the extremals of the problem and to prove
the existence of chattering phenomenon, and how the
numerical continuation methods are used to overcome
the chattering and to design the numerical resolution
method.

Structure of the paper. In Section 2, several optimal
control problems stemming from various aerospace mis-
sions are systematically introduced as motivation. In
Section 3, we provide a brief survey of geometric optimal
control, including the use of Lie and Poisson brackets with
first and higher order optimality conditions. In Section 4,
we recall classical numerical methods for optimal con-
trol problems, namely indirect and direct methods. In
Section 5, we recall the concept of continuation meth-
ods, which help overcoming the initialization issue for
indirect methods. In Section 6, we shortly give some appli-
cations of geometric optimal control and of continuation
for space trajectory optimization problems. In Section 7,

we detail a full nonacademic example in aerospace (an
attitude-trajectory problem), in order to illustrate how to
solve optimal control problems with the help of geometric
optimal control theory and the continuation methods.

2 Applications to aerospace problems
Transport in space gives rise to a large range of problems
that can be addressed by optimal control and mathemat-
ical programming techniques. Three kinds of problems
can be distinguished depending on the departure and the
arrival point: ascent from the Earth ground to an orbit,
reentry from an orbit to the Earth ground (or to another
body of the solar system), transfer from an orbit to another
one. A space mission is generally composed of successive
ascent, transfer and reentry phases, whose features are
presented in the following paragraphs.
Ascent missions necessitate huge propellant masses to

reach the orbital velocity and deliver large payloads such
as telecommunications satellites. Due to the large lift-off
mass, only chemical rocket engines are able to deliver the
required thrust level. Consumption minimization is the
main concern for these missions whose time of flight is
generally about half an hour. Heavy launchers lift off ver-
tically from a fixed ground launch pad, whereas airborne
launchers are released horizontally by an airplane, ben-
efiting thus from a higher initial altitude and an initial
subsonic velocity. The first part of the trajectory occurs in
the Earth atmosphere at increasing speed. The large aero-
dynamics loads met during the atmospheric flight require
flying at near zero angle of attack, so that the atmo-
spheric leg is completely driven by the initial conditions.
Due to the large masses of propellants carried on board,
the whole flight must be track by ground radar stations
and stringent safety constraints must be applied regarding
the area flown over. Once in vacuum the vehicle attitude
is no longer constrained and the thrust direction can be
freely chosen. When the orbital velocity is reached the
thrust level can be reduced and coast arcs may help spar-
ing propellant to reach the targeted orbit. Figure 1 gives an
overview of the constraints applied to an ascent trajectory.
Reentry missions aim at retrieving either experiment

results or space crews. The trajectory is split into a
coast arc targeting accurate conditions at the atmospheric
entry interface and a gliding atmospheric leg of about
half an hour until the landing. The most stringent con-
straint comes from the convection flux that grows quickly
when entering the dense atmosphere layers at hypersonic
speeds. A near-horizontal flight is mandatory to achieve a
progressive braking at limited thermal flux and load fac-
tor levels. The aerodynamic forces are controlled through
the vehicle attitude. The angle of attack modulates the
force magnitude and the loads applied to the vehicle. The
bank angle orientates the lift left or right to follow an ade-
quate descent rate and achieve the required downrange
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Fig. 1 Ascent trajectory and physical constraints over each ascent phase

and cross-range until the targeted landing site. The land-
ing may occur vertically in the sea or on the ground,
or horizontally on a runway. Depending on the landing
options the final braking is achieved by thrusting engines
or by parachutes. If necessary the touchdown may also be
damped by airbags or legs, for example for delivering sci-
entific payloads on theMars surface. The reentry is always
the final part of a space mission. Take ISS servicing mis-
sion as example, see Fig. 2. The space shuttle is launched
to joint the space station on the orbit, and it must return
to the Earth after the station docking. It is clear that the
reentry is the final part of the ISS serving mission.
Orbital missions deal with orbit changes around the

Earth and also with interplanetary travels. A major dif-
ference with ascent and reentry trajectories is the much
larger duration, which ranges from days tomonths or even
years to reach the farthest planets of the solar system. The

motion is essentially due to the gravity field of the nearest
body and possibly of a second one. The vehicle opera-
tional life is limited by its onboard propellant so that all
propelled maneuvers must be achieved as economically as
possible. Depending on the engine thrust level the maneu-
vers are modeled either as impulsive velocity changes
(impulsive modelling) or as short duration boosts (high
thrust modelling) or as long duration boosts (low thrust
modelling). Low thrust engines are particularly attractive
due to their high specific impulse, but they require a high
electrical power that cannot be delivered by onboard bat-
teries. The energy is provided by large solar panels and
the engine must be cut-off when the vehicle enters the
Earth shadow. Low thrust orbit raising of telecommunica-
tion satellites toward the geostationary orbit at 36000 km
lead thus to quite complex optimal control problems as
pictured on Fig. 3. The green arrows represent the thrust

Fig. 2 ISS servicing and shuttle reentry
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Fig. 3 Low thrust orbit raising toward the geostationary orbit

direction on the target geostationary orbit, and the red
ones represent the thrust direction on the initial orbit.
Other orbital transfer problems are the removal of space

debris or the rendezvous for orbit servicing. Interplan-
etary missions raise other difficulties due to the gravity
of several attracting bodies. For missions towards the
Lagrange points (see Fig. 4) the detailed analysis of invari-
ant manifolds in the three body problem can provide very
inexpensive transfer solutions. In Fig. 4, five Lagrangian
points Li, i = 1, · · · , 5 are illustrated in the left subfigure,
and some trajectories around points L1 and L2 are plotted
in the right subfigure, including a L1 orbit, a L2 orbit, and
a L1-L2 transfer orbit.
For farther solar system travels successive fly-bys

around selected planets allow “free” velocity gains. The
resulting combinatorial problem with optional intermedi-
ate deep space maneuvers is challenging.

The above non exhaustive list gives a preview of various
space transportation problems. In all cases the mission
analysis comprises a simulation task and an optimiza-
tion task (see Fig. 5). Various formulations and methods
are possible regarding these two tasks. Selecting an ade-
quate approach is essential in order to build a satisfying
numerical solution process.
The simulation task consists in integrating the dynamics

differential equations derived from mechanics laws. The
vehicle is generally modeled as a solid body. The motion
combines the translation of the center of gravity defining
the trajectory and the body rotation around its center of
gravity defining the attitude. The main forces and torques
originate from the gravity field (always present), from the
propulsion system (when switched on) and possibly from
the aerodynamics shape when the vehicle evolves in an
atmosphere. In many cases a gravity model including the

Fig. 4 Earth-Moon system Lagrange points and orbits. (Sources : lagrangianpoints.com / space.stackexchange.com)
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Fig. 5 Simulation and optimization tasks

first zonal term due to the Earth flattening is sufficiently
accurate at the mission analysis stage. The aerodynamics
is generally modeled by the drag and lift components tab-
ulated versus the Mach number and the angle of attack.
The atmosphere parameters (density, pressure, temper-
ature) can be represented by an exponential model or
tabulated with respect to the altitude. A higher accuracy
may be required on some specific occasions, for example
to forecast the possible fall-out of dangerous space debris,
to assess correctly low thrust orbital transfers or complex
interplanetary space missions. In such cases the dynam-
ical model must be enhanced to account for effects of
smaller magnitudes. These enhancements include higher
order terms of the gravitational field, accurate atmosphere
models depending on the season and the geographic posi-
tion, extended aerodynamic databases, third body attrac-
tion, etc, and also other effects such as the solar wind
pressure or the magnetic induced forces.
Complex dynamical models yield more representative

results at the expense of larger computation times. In view
of trajectory optimization purposes the simulationmodels
have to make compromises between accuracy and speed.
A usual simplification consists in assuming that the trans-
lation and the rotation motions are independent. With
this assumption the trajectory problem (also called the
guidance problem) and the attitude problem (also called
the control problem) can be addressed separately. This
uncoupling of the guidance and the control problem is
valid either when the torque commands have a negligible
effect on the CoG motion or when the control time scale
is much shorter than the guidance time scale. Most space
vehicles fall into one of these two categories. The main
exceptions are atmospheric maneuvering vehicles such as
cruise or anti-ballistic missiles and airborne launchers.
Such vehicles have to perform large reorientation

maneuvers requiring significant durations. These maneu-
vers have a sensible influence of the CoGmotion and they
must be accounted for a realistic trajectory optimization.
Another way to speed up the simulation consists in

splitting the trajectory into successive sequences using
different dynamical models and propagation methods.
Ascent or reentry trajectories are thus split into propelled,
coast and gliding legs, while interplanetary missions are

modeled by patched conics. Each leg is computed with
its specific coordinate system and numerical integrator.
Usual state vector choices are Cartesian coordinates for
ascent trajectories, orbital parameters for orbital trans-
fers, spherical coordinate for reentry trajectories. The
reference frame is usually Galilean for most applications
excepted for the reentry assessment. In this case an Earth
rotating frame is more suited to formulate the landing
constraints. The propagation of the dynamics equations
may be achieved either by semi-analytical or numerical
integrators. Semi-analytical integrators require significant
mathematical efforts prior to the implementation and
they are specialized to a given modelling. For example
averaging techniques are particularly useful for long time-
scale problems, such as low thrust transfers or space
debris evolution, in order to provide high speed simu-
lations with good differentiability features. On the other
hand numerical integrators can be applied very directly
to any dynamical problem. An adequate compromise has
then to be found between the time-step as large as pos-
sible and the error tolerance depending on the desired
accuracy.
The dynamics models consider first nominal features of

the vehicle and of its environment in order to build a ref-
erence mission profile. Since the real flight conditions are
never perfectly known, the analysis must also be extended
with model uncertainties, first to assess sufficient mar-
gins when designing a future vehicle, then to ensure the
required success probability and the flight safety when
preparing an operational flight. The desired robustness
may be obtained by additional propellant reserves for a
launcher, or by reachable landing areas for a reentry glider.
The optimization task consists in finding the vehi-

cle commands and optionally some design parameters
in order to fulfill the mission constraints at the best
cost. In most cases, the optimization deals only with
the path followed by one vehicle. In more complicated
cases, the optimization must account for moving tar-
gets or other vehicles that may be jettisoned parts of
the main vehicle. Examples or such missions are debris
removal, orbital rendezvous, interplanetary travel or
reusable launchers with recovery of the stages after their
separation.
A typical reusable launcher mission is pictured on Fig. 6.

The goal is to reach the targeted orbit with the upper
stage carrying the payload, while the lower and the upper
stage must be recovered safely for the next launches.
This problem necessitates a multi-branch modelling and a
coordinated optimization method.
For preliminary design studies, the vehicle configuration

is not defined. The optimization has to deal simultane-
ously with the vehicle design and the trajectory control.
Depending on the problem formulation the optimization
variables may thus be functions, reals or integers.
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Fig. 6 A typical reusable launcher mission

In almost all cases an optimal control problem must be
solved to find the vehicle command law along the trajec-
tory. The command aims at changing the magnitude and
the direction of the forces applied, namely the thrust and
the aerodynamic force. The attitude time scale is often
much shorter than the trajectory time scale so that the
attitude control can be considered as nearly perfect, i.e.,
instantaneous or with a short response time. The rota-
tion dynamics is thus not simulated and the command is
directly the vehicle attitude. If the rotation and the trans-
lation motions are coupled, the 6 degrees of freedommust
be simulated. The command are then the nozzle or the
flap deflections depending on the vehicle control devices.
The choice of the attitude angles depends on the mission
dynamics. For a propelled launcher, the motion is con-
trolled by the thrust force which is nearly aligned with
the roll axis. This axis is orientated by inertial pitch and
yaw angles. For a gliding reentry vehicle, the motion is
controlled by the drag and lift forces. The angle of attack
modulates the force magnitude while the bank angle only
acts on the lift direction. For orbital maneuvering vehi-
cles, the dynamics is generally formulated using the orbital
parameters evolution, e.g., by Gauss equations, so that
attitude angles in the local orbital frame are best suited.
If the trajectory comprises multiple branches or suc-

cessive flight sequences with dynamics changes and inte-
rior point constraints, discontinuities may occur in the
optimal command law. This occurs typically at stage sep-
arations and engine ignitions or shutdowns. The commu-
tation dates between the flight sequences themselves may
be part of the optimized variables, as well as other finite
dimension parameters, leading to a hybrid optimal control
problem. A further complexity occurs with path con-
straints relating either to the vehicle design (e.g., dynamic
pressure or thermal flux levels), or to the operations (e.g.,

tracking, safety, lightening). These constraints may be
active along some parts of the trajectory, and the junction
between constrained and unconstrained arcs may raise
theoretical and numerical issues.
The numerical procedures for optimal control problems

are usually classified between direct and indirectmethods.
Direct methods discretize the optimal control problem in
order to rewrite it as a nonlinear large scale optimiza-
tion problem. The process is straightforward and it can
be applied in a systematic manner to any optimal control
problem. New variables or constraints may be added eas-
ily. But achieving an accurate solution requires a careful
discretization and the convergence may be difficult due to
the large number of variables. On the other hand indirect
methods are based on the PontryaginMaximum Principle
which gives a set of necessary conditions for a local mini-
mum. The problem is reduced to a nonlinear system that
is generally solved by a shooting method using a Newton-
like algorithm. The convergence is fast and accurate, but
the method requires both an adequate starting point and
a high integration accuracy. The sensitivity to the initial
guess can be lowered by multiple shooting which breaks
the trajectory into several legs linked by interface con-
straints, at the expense of a larger nonlinear system. The
indirect method requires also prior theoretical work for
problems with singular solutions or with state constraints.
Handling these constraints by penalty method can avoid
numerical issues, but yields less optimal solutions.
In some cases the mission analysis may address discrete

variables. Examples of such problems are the removal of
space debris by a cleaner vehicle or interplanetary trav-
els with multiple fly-bys. For a debris cleaning mission
the successive targets are moving independently of the
vehicle, and the propellant required to go from one tar-
get to another depends on the rendezvous dates. The
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optimization aims at selecting the targets and the visit-
ing order in order to minimize the required propellant.
The path between two given targets is obtained by solving
a time-dependent optimal control problem. The overall
problem is thus a combinatorial variant of the well-known
Traveling Salesman Problem, with successive embedded
optimal control problems.
For an interplanetary mission successive fly-bys around

planets are necessary to increase progressively the velocity
in the solar system and reach far destinations. Additional
propelled maneuvers are necessary either at the fly-by or
in the deep space in order to achieve the desired path.
An impulsive velocity modelling is considered for these
maneuvers in a first stage. If a low thrust engine is used,
the maneuver assessment must be refined by solving an
embedded optimal control problem. The optimization
problem mixes discrete variables (selected planets, num-
ber of revolutions between two successive fly-bys, number
of propelled maneuvers) and continuous variables (fly-bys
dates, maneuver dates, magnitudes and orientations).
In preliminary design studies, the optimization problem

addresses simultaneously the vehicle configuration and its

command along the trajectory. The goal is usually to find
the minimal gross weight vehicle able to achieve the spec-
ified mission. The configuration parameters are either
continuous or discrete variables. For a propelled vehicle
the main design parameters are the number of stages, the
number of engines, the thrust level, the propellant type
and the propellant masses. For a reentry vehicle the design
is driven by the aerodynamic shape, the surface and by
the auxiliary braking sub-systems if any. The gross mass
minimization is essential for the feasibility of interplan-
etary missions. An example is given by a Mars lander
composed of a heat shield, one or several parachutes,
braking engines, airbags and legs. The sub-system designs
drive the acceptable load levels and thus the state con-
straints applied to the entry trajectory. The successive
sequence of the descent trajectory are depicted on Fig. 7.
Large uncertainties have also to be accounted regarding
the Mars environment in order to define a robust vehicle
configuration.
Multidisciplinary optimization deals with such prob-

lems involving both the vehicle design and the mission
scenario. The overall problem is too complex to be address

Fig. 7 Entry, descent and landing system design
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directly, and a specific optimization procedure must be
devised for each new case. A bi-level approach consists
in separating the design and the trajectory optimization.
The design problem is generally non differentiable or may
present many local minima. It can be addressed in some
cases by mixed optimization methods like branch and
bound, or more generally by meta-heuristics like simu-
lated annealing, genetic algorithms, particle swarm, etc.
None is intrinsically better than another and a specific
analysis is needed to formulate the optimization problem
in a way suited to the selected method. These algorithms
are based partly on a random exploration of the variable
space. In order to be successful the exploration strategy
has to be customized to the problem specificities. Thou-
sands or millions of trials may be necessary to yield a
candidate configuration, based on very simplified per-
formance assessment (e.g., analytical solutions, impulsive
velocities, response surface models etc.). The trajectory
problem is then solved for this candidate solution in order
to assess the real performance, and if necessary iterate on
the configuration optimization with a corrected the per-
formance model. Meta-heuristics may also be combined
with multi-objective optimization approaches since sev-
eral criteria have to be balanced at the design stage of a
new space vehicle. The goal is to build a family of launch-
ers using a common architecture of propelled stages with
variants depending the targeted orbit and payload. By this
way the development and manufacturing costs are min-
imized while the launcher configuration and the launch
cost can be customized for each flight.

3 Geometric optimal control
Geometric optimal control (see, e.g., [1, 74, 85]) com-
bines classical optimal control and geometric methods in
system theory, with the goal of achieving optimal synthe-
sis results. More precisely, by combining the knowledge
inferred from the Pontryagin Maximum Principle (PMP)
with geometric considerations, such as the use of Lie
brackets and Lie algebras, of differential geometry on
manifolds, and of symplectic geometry and Hamiltonian
systems, the aim is to describe in a precise way the struc-
ture of optimal trajectories. We refer the reader to [74, 85]
for a list of references on geometric tools used in geomet-
ric optimal control. The foundations of geometric control
can be dated back to the Chow’s theorem and to [24, 25],
where Brunovsky found that it was possible to derive reg-
ular synthesis results by using geometric considerations
for a large class of control systems. Apart from the main
goal of achieving a complete optimal synthesis, geometric
control aims also at deriving higher-order optimality con-
ditions in order to better characterize the set of candidate
optimal trajectories.
In this section, we formulate the optimal control prob-

lem on differentiable manifolds and recall some tools

and results from geometric optimal control. More pre-
cisely, the Lie derivative is used to define the order of the
state constraints, the Lie and Poisson brackets are used
to analyze the singular extremals and to derive higher
order optimality conditions, and the optimality conditions
(order one, two and higher) are used to analyze the chat-
tering extremals (see Section 3.4 for the chattering phe-
nomenon). These results will be applied in Section 7 on a
coupled attitude and trajectory optimization problem.

3.1 Optimal control problem
Let M be a smooth manifold of dimension n, let N be
a smooth manifold of dimension m, let M0 and M1 be
two subsets of M, and let U be a subset of N. We con-
sider the general nonlinear optimal control problem (P0),
of minimizing the cost functional

C(tf ,u) =
∫ tf

0
f 0(x(t),u(t))dt + g(tf , x(tf )),

over all possible trajectories solutions of the control
system

ẋ(t) = f (x(t),u(t)), (1)

and satisfying the terminal conditions

x(0) ∈ M0, x(tf ) ∈ M1, (2)

where the mappings f : M × N → TM, f 0 : M × N → R,
and g : R×M → R are smooth, and where the controls are
bounded and measurable functions defined on [ 0, tf (u)]
of R+, taking values in U. The final time tf may be fixed
or not. We denote U the set of admissible controls such
that the corresponding trajectories steer the system from
an initial point ofM0 to a final point inM1.
For each x(0) ∈ M0 and u ∈ U , we can integrate the

system (1) from t = 0 to t = tf , and assess the cost
C(tf ,u) corresponding to x(t) = x(t; x0,u(t)) and u(t) for
t =[ 0, tf ]. Solving the problem (P0) consists in finding
a pair (x(t),u(t)) = (x(t; x0,u(t)),u(t)) minimizing the
cost. For convenience, we define the end-point mapping
to describe the final point of the trajectory solution of the
control system (1).

Definition 1 The end-point mapping E : M × R × U of
the system is defined by

E(x0, tf ,u) = x(x0, tf ,u),

where t �→ x(x0, t,u) is the trajectory solution of the control
system (1) associated to u such that x(x0, 0,u) = x0

Assuming moreover that U is endowed with the stan-
dard L∞ topology, then the end-point mapping is C1 on
U , and in terms of the end-point mapping, the optimal
control problem under consideration can be written as the
infinite-dimensional minimization problem
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min
{
C(tf ,u)|x0 ∈ M0,E

(
x0, tf ,u

)
∈ M1,u ∈ L∞ ([0, tf ] ;U)} .

This formulation of the problem will be used when we
introduce the Lagrange multipliers rule in Section 3.3.1
in a simpler case when M0 = {x0} and M1 = {x1} and
U = R

m.
If the optimal control problem has a solution, we say that

the corresponding control and trajectory are minimizing
or optimal. We refer to [32, 84] for existence results in
optimal control.
Next, we introduce briefly the concept of Lie derivative,

and of Lie and Poisson brackets (used in Section 3.3.3 for
higher order optimality conditions). These concepts will
be applied in Section 7 to analyze the pull-up maneuver
problem.

3.2 Lie derivative, lie bracket, and poisson bracket
Let � be an open and connected subset in M, and denote
the space of all infinitely continuously differentiable func-
tions on � by C∞(�). Let X ∈ C∞(�) be a vector field.
X can be seen as defining a first-order differential opera-
tor from the space C∞(�) into C∞(�) by taking at every
point q ∈ � the directional derivative of a function ϕ ∈
C∞(�) in the direction of the vector field X(q), i.e.,

X : C∞(�) → C∞(�), ϕ �→ Xϕ,

defined by

(X.ϕ)(q) = ∇ϕ(q) · X(q).

We call (X.ϕ)(q) the Lie derivative of the function ϕ

along the vector field X, and generally one denote the
operator by LX , i.e.,

LX(ϕ)(q) = (X.ϕ)(q).

In general, the order of the state constraints in optimal
control problems is defined through Lie derivatives as we
will show on the example in Section 7.1.5.

Definition 2 The Lie bracket of two vector fields X and
Y defined on a domain � is the operator defined by the
commutator

[X,Y ]= X ◦ Y − Y ◦ X = XY − YX.

The Lie bracket actually defines a first-order differential
operator. In particular, if X : � → M, z �→ X(z), and
Y : � → M, z �→ Y (z), are coordinates for these vector
fields, then

[X,Y ] (z) = DY (z) · X(z) − DX(z) · Y (z).

where DX and DY denote the matrices of the partial
derivatives of the vector fields X and Y.

Let X, Y, and Z be three C∞ vector fields defined on �,
and let α, β be smooth functions on �. The Lie bracket
has the following properties:

• [ ·, ·] is a bilinear operator;
• [X,Y ]= −[Y ,X];
• [X + Y ,Z]=[X,Z]+[Y ,Z];
• [X, [Y ,Z] ]+[Y , [Z,X] ]+[Z, [X,Y ] ]= 0 (Jacobi

identity);
• [αX,βY ]= αβ[X,Y ]+α(LXβ)Y − β(LYα)X.

These properties show that the vector fields (as differen-
tial operators) form a Lie algebra. A Lie algebra over R

is a real vector space G together with a bilinear operator
[ ·, ·] : G × G → G such that for all X,Y ,Z ∈ G we have
[X,Y ]= −[Y ,X] and [X + Y ,Z]=[X,Z]+[Y ,Z].
Going back to the problem (P0), we assume that

f (x,u) = f0(x) + uf1(x), f 0(x,u) = 1, and g(t, x) = 0, and
we define a C1 function by

h(x, p) = 〈p,Z(x)〉,
where p is the adoint vector and Z is a vector field.
The function h is the Hamiltonian lift of the vector field
Z. Accordingly, and with a slight abuse of notation, we
denote by h(t) = h(x(t), p(t)) the value at time t of h along
a given extremal. The derivative of this function is

ḣ(t) =〈ṗ,Z(x)〉 + 〈p,DZ(x)ẋ〉
= − 〈p (Df0(x) + uDf1(x)

)
,Z(x)〉

+ 〈p,DZ(x)
(
f0(x) + uf1(x)

)〉
=〈p,DZ(x)f0(x) − Df0(x)Z(x)〉

+ u〈p,DZ(x)f1(x) − Df1(x)Z(x)〉
=〈p, [ f0,Z] (x)〉 + u〈p, [ f1,Z] (x)〉.

(3)

Let us recall also the concept of the Poisson bracket.
The Poisson bracket is related to the Hamiltonians. In the
canonical coordinates z = (x, p), given two C1 functions
α1(x, p) and α2(x, p), the Poisson bracket takes the form

{α1,α2} (x, p) = ∂α2
∂x

∂α1
∂p

− ∂α1
∂x

∂α2
∂p

.

According to (3), taking

α1(x(t), p(t))= H(x(t), p(t)), α2(x(t), p(t))= h(x(t), p(t)),

we have
ḣ(t) = {H , h} (x(t), p(t))

= {h0, h} (x(t), p(t)) + u {h1, h} (x(t), p(t)),

where h0(t) = 〈p(t), f0(x(t))〉 and h1(t) = 〈p(t), f1(x(t))〉.
For convenience, we adopt the usual notations

ad f0.f1 = [f0, f1] , resp. ad h0.h1 = {h0, h1} ,
and

adif0.f1=[f0, adi−1f0.f1
]
, resp. adih0.h1={h0, adi−1h0.h1

}
.
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We will see in Section 3.3 (and also in Section 7) that
the Lie brackets and the Poisson brackets are very useful
for deriving higher order optimality conditions in simpler
form and for calculating the singular controls.

3.3 Optimality conditions
This section gives an overview of necessary optimality
conditions.
For the first-order optimality conditions, we recall the

Lagrange multipliers method for the optimal control
problemwithout control constraints. Such constraints can
be accounted in the Lagrangian with additional Lagrange
multipliers [23]. This method leads to weaker results
than the Pontryagin Maximum Principle which considers
needle-like variations accounting directly for the control
constraints.
In some cases, the first-order conditions do not pro-

vide adequate information of the optimal control, and the
higher order optimality conditions are needed. Therefore
we recall the second and higher order necessary opti-
mality conditions that must be met by any trajectory
associated to an optimal control u. These conditions are
especially useful to analyze the singular solutions because
the first-order optimality conditions do not provide any
information in such cases.

3.3.1 First-order optimality conditions
Lagrange multipliers rule We consider the simplified
problem (P0) with M = R

n, M0 = {x0}, M1 = {x1}, and
U = R

m. According to the well known Lagrange multipli-
ers rule (and assuming the C1 regularity of the problem),
if x ∈ M is optimal then there exists a nontrivial couple
(ψ ,ψ0) ∈ R

n × R such that

ψ .dEx0,tf (u) + ψ0dCtf (u) = 0, (4)

where dE(·) and dC(·) denote the Fréchet derivative of
E(·) and C(·), respectively. Defining the Lagrangian by

Ltf = ψEx0,tf (u) + ψ0dCtf (u),

this first-order necessary condition can be written in the
form

∂Ltf
∂u

(u,ψ ,ψ0) = 0.

If we define as usual the intrinsic second-order deriva-
tive Qtf of the Lagrangian as the Hessian

∂2Ltf
∂2u (u,ψ ,ψ0)

restricted to the subspace ker
∂Ltf
∂u , a second-order neces-

sary condition for optimality is the nonpositivity of Qtf
(with ψ0 ≤ 0), and a second-order sufficient condition for
local optimality is the negative definiteness of Qtf .
These results are weaker to those obtained with the

PMP. The Lagrange multiplier (ψ ,ψ0) is in fact related to
the adjoint vector introduced in the PMP. More precisely,
the Lagrange multiplier is unique up to a multiplicative

scalar if and only if the trajectory x(·) admits a unique
extremal lift up to a multiplicative scalar, and the adjoint
vector (p(·), p0) can be constructed such that (ψ ,ψ0) =
(p(tf ), p0) up to some multiplicative scalar. This relation
can be observed from the proof of the PMP. The Lagrange
multiplier ψ0 = p0 is associated with the instantaneous
cost. The case with p0 null is said abnormal, which means
that there are no neighboring trajectories having the same
terminal point (see, e.g., [2, 85]).

Pontryagin maximum principle The Pontryagin Max-
imum Principle (PMP, see [70]) for the problem (P0)
with control constraints and without state constraints is
recalled in the following statement.

Theorem 1 If the trajectory x(·), associated to the opti-
mal control u on [ 0, tf ], is optimal, then it is the projection
of an extremal (x(·), p(·), p0,u(·)) where p0 ≤ 0, and p(·) :
[ 0, tf ] �→ T∗

x(t)M
1 is an absolutely continuous mapping

(called adjoint vector) with (p(·), p0) �= 0, such that almost
everywhere on [ 0, tf ],

ẋ(t) = ∂H
∂p
(
x(t), p(t), p0,u(t)

)
, ṗ(t)

= −∂H
∂x
(
x(t), p(t), p0,u(t)

)
,

(5)

where the Hamiltonian is defined by

H(x, p, p0,u) = 〈p, f (x,u)〉 + p0f 0(x,u),

and there holds almost everywhere on [ 0, tf ].

H
(
x(t), p(t), p0,u(t)

) = max
v∈U H(x(t), p(t), p0, v), (6)

If moreover, the final time tf is not fixed, then

max
v∈U H

(
x(t), p(t), p0, v

) = −p0
∂g
∂t
(
tf , x(tf )

)
. (7)

If M0 and M1 (or just one of them) are submanifolds of
M locally around x(0) ∈ M0 and x(tf ) ∈ M1, then the
adjoint vector satisfies the transversality conditions at both
endpoints (or just one of them)

p(0) ⊥ Tx(0)M0, p(tf )−p0
∂g
∂x
(
tf , x(tf )

) ⊥ Tx(tf )M1, (8)

where TxM0 (resp., TxM1) denote the tangent space to M0
(resp., M1) at the point x.

The quadruple (x(·), p(·), p0,u(·)) is called the extremal
lift of x(·). An extremal is said to be normal (resp., abnor-
mal) if p0 < 0 (resp., p0 = 0). According to the convention
chosen in the PMP, we consider p0 ≤ 0. If we adopt the
opposite convention p0 ≥ 0, then we have to replace
the maximization condition (7) with a minimization con-
dition. When there are no control constraints, abnormal
extremals project exactly onto singular trajectories.
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The proof of the PMP is based on needle-like varia-
tions and uses a conic implicit function theorem (see, e.g.,
[1, 52, 78]). Since these needle-like variants are of order
one, the optimality conditions given by the PMP are nec-
essary conditions of the first-order. For singular controls,
higher order control variations are needed to obtain opti-
mality conditions. A singular control is defined precisely
as follows.

Definition 3 Assume that M0 = {x0}. A control u
defined on [ 0, tf ] is said to be singular if and only if the
Fréchet differential ∂E

∂u (x0, tf ,u) is not of full rank. The tra-
jectory x(·) associated with a singular control u is called
singular trajectory.

In practice the condition ∂2H
∂u2 (x(·), p(·), p0,u(·)) = 0 (the

Hessian of the Hamiltonian is degenerate) is used to char-
acterize singular controls. An extremal (x(·), p(·), p0,u(·))
is said totally singular if this condition is satisfied. The
is especially the case when the control is affine (see
Section 3.3.3).
The PMP claims that if a trajectory is optimal, then it

should be found among projections of extremals joining
the initial set to the final target. Nevertheless the projec-
tion of a given extremal is not necessarily optimal. This
motivates the next section on second-order optimality
conditions.

3.3.2 Second-order optimal conditions
The literature on first and/or second-order sufficient
conditions with continuous control is rich (see, e.g.,
[42, 61, 62, 65, 89]), which is less the case for discon-
tinuous controls (see, e.g., [68]). We recall hereafter the
Legendre type conditions with Poisson brackets to show
that geometric optimal control allows a simple expression
of the second-order necessary and sufficient conditions
(see Theorem 2).

Legendre type conditions For the optimal control prob-
lem (P0), we have the following second-order optimality
conditions (see, e.g., [1, 10, 16]).

• If a trajectory x(·), associated to a control u, is
optimal on [ 0, tf ] in L∞ topology, then the Legendre
condition holds along every extremal lift
(x(·), p(·), p0,u(·)) of x(·), that is
∂2H
∂u2

(x(·), p(·), p0,u(·)).(v, v) ≤ 0, ∀v ∈ R
m.

• If the strong Legendre condition holds along the
extremal (x(·), p(·), p0,u(·)), that is, there exists
ε0 > 0 such that

∂2H
∂u2

(x(·), p(·), p0,u(·)).(v, v) ≤ −ε0‖v‖2, ∀v ∈ R
m,

then there exists ε1 > 0 such that x(·) is locally
optimal in L∞ topology on [ 0, ε1]. If the extremal is
moreover normal, i.e., p0 �= 0, then x(·) is locally
optimal in C0 topology on [ 0, ε1].

The C0 local optimality and L∞ local optimality are
respectively called strong local optimality and weak local
optimality2. The Legendre condition is a necessary opti-
mality condition, whereas the strong Legendre condition
is a sufficient optimality condition. We say that we are
in the regular case whenever the strong Legendre condi-
tion holds along the extremal. Under the strong Legendre
condition, a standard implicit function argument allows
expressing, at least locally, the control u as a function of x
and p.
In the totally singular case, the strong Legendre condi-

tion is not satisfied and we have the following generalized
condition [1, 51].

Theorem 2 (Goh and Generalized Legendre condition)

• If a trajectory x(·), associated to a piecewise smooth
control u, and having a totally singular extremal lift
(x(·), p(·), p0,u(·)), is optimal on [ 0, tf ] in L∞
topology, then the Goh condition holds along the
extremal, that is{

∂H
∂ui

,
∂H
∂uj

}
= 0,

where {·, ·} denotes the Poisson bracket on T∗M.
Moreover, the generalized Legendre condition holds
along every extremal lift (x(·), p(·), p0,u(·)) of x(·),
that is{{

H ,
∂H
∂u

.v
}
,
∂H
∂u

.v
}
+
{

∂2H
∂u2

.(u̇, v),
∂H
∂u

.v
}

≤ 0, ∀v ∈ R
m.

• If the Goh condition holds along the extremal lift
(x(·), p(·), p0,u(·)), if the strong Legendre condition
holds along the extremal (x(·), p(·), p0,u(·)), that is,
there exists ε0 > 0 such that{{
H ,

∂H
∂u

.v
}
,
∂H
∂u

.v
}

+
{

∂2H
∂u2

.(u̇, v),
∂H
∂u

.v
}

≤ −ε0‖v‖2, ∀v ∈ R
m,

and if moreover the mapping
∂f
∂u (x0,u(0)) : Rm �→ Tx0M is one-to-one, then there
exists ε1 > 0 such that x(·) is locally optimal in L∞
topology on [ 0, ε1].

As we have seen, the Legendre (or generalized Legen-
dre) condition is a necessary condition, while the strong
(or strong generalized Legendre) condition is a sufficient
condition. However, these sufficient conditions are not
easy to verify in practice. This leads to the next section
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where we explain how to use the so-called conjugate
point along the extremal to determine the time when the
extremal is no longer optimal.

Conjugate points We consider here the simplified prob-
lem (P0) with M = R

n, M0 = {x0}, M1 = {x1}, and
U = R

m. Under the strict Legendre assumption assuming
that the Hessian ∂2H

∂u2 (x, p, p0,u) is negative definite, the
quadratic form Qtf is negative definite if tf > 0 is small
enough.

Definition 4 The first conjugate time is defined by the
infimum of times t > 0 such that Qt has a nontrivial
kernel. We denote the first conjugate time along x(·) by tc.

The extremals are locally optimal (in L∞ topology) as
long as we do not encounter any conjugate point. Define
the exponential mapping

expx0(t, p0) = x(t, x0, p0), (9)

where the solution of (5) starting from (x0, p0) at t = 0 is
denoted as (x(t, x0, p0), p(t, x0, p0)). Then, we have the
following result (see, e.g., [1, 15] for the proof and more
precise results):

The time tc is a conjugate time along x(·) if and only if
the mapping expx0(tc, ·) is not an immersion at p0, i.e.,
the differential of the mapping expx0(tc, ·) is not
injective.

Essentially this result states that computing a first conju-
gate time tc reduces to finding the zero of some determi-
nant along the extremal. In the smooth case (the control
can be expressed as a smooth function of x and p), the
survey article [15] provides also some algorithms to com-
pute first conjugate times. In case of bang-bang control,
a conjugate time theory has been developed (see [79]
for a brief survey of the approaches), but the compu-
tation of conjugate times remains difficult in practice
(see, e.g., [60]).
When the singular controls are of order one (see

Definition 5), the second-order optimality condition is
sufficient for the analysis. For higher order singular con-
trols, higher order optimality conditions are needed which
are recalled in the next section.

3.3.3 Order of singular controls and higher order optimality
conditions

In this section we recall briefly the order of singular con-
trols and the higher order optimality conditions. They
will be used in Section 7.1 to analyze the example, which
exhibits a singular control of order two. It is worth not-
ing that when the singular control is of order 1 (also called
minimal order in [16, 34]), these higher order optimality
conditions are not required.

To illustrate how to use these conditions, we consider
the minimal time control problem onM
⎧⎪⎪⎨
⎪⎪⎩

min tf ,
ẋ(t)= f (x(t))+u1(t)g1(x(t)) + u2(t)g2(x(t)), u=(u1,u2)
‖u(t)‖2 = u1(t)2 + u2(t)2 ≤ 1,
x(0) = x0, x(tf ) ∈ M1, tf ≥ 0 free,

(10)

where f, g1 and g2 are smooth vector fields on M. We
assume thatM1 is accessible from x0, and that there exists
a constant Btf such that for every admissible control u,
the corresponding trajectory xu(t) satisfies ‖xu(t)‖ ≤ Btf
for all t ∈[ 0, tf ]. Then, according to classical results (see,
e.g., [32, 84]), there exists at least one optimal solution
(x(·),u(·)), defined on [ 0, tf ].
Let h0(x, p) = 〈p, f (x)〉, h1(x, p) = 〈p, g1(x)〉, and

h2(x, p) = 〈p, g2(x)〉. According to the PMP (see
Section 3.3.1), the Hamiltonian of the problem (10) is
defined by

H
(
x, p, p0,u

) = h0(x, p) + u1h1(x, p) + u2h2(x, p) + p0

where p(·) is the adjoint variable, and p0 ≤ 0 is a
real number such that (p(·), p0) �= 0. Defining 	(t) =
(h1(t), h2(t)), the maximization condition of the PMP
yields

u(t) = 	(t)
‖	(t)‖ ,

almost everywhere on [ 0, tf ], whenever 	(t) �= (0, 0).
We call	 (as well as its components) the switching func-

tion. We say that an arc (restriction of an extremal to a
subinterval I) is regular if ‖	(t)‖ �= 0 along I. Otherwise,
the arc is said to be singular.
Following [45], we give here below a precise definition

of the order of a singular control. The use of Poisson
(and Lie) brackets simplifies the formulation of the higher
order optimality conditions. This is one of the reasons
making geometric optimal control theory a valuable tool
in practice.

Definition 5 The singular control u = (u1,u2) defined
on a subinterval I ⊂[ 0, tf ] is said to be of order q if

1. the first (2q− 1)-th time derivatives of hi, i = 1, 2, do
not depend on u and

dk

dtk
(hi) = 0, k = 0, 1, · · · , 2q − 1,

2. the 2q-th time derivative of hi, i = 1, 2, depends on u
linearly and

∂

∂ui
d2q

dt2q
(hi) �= 0, det

(
∂

∂u
d2q

dt2q
	

)
�= 0, i = 1, 2,

along I.
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The control u is said to be of intrinsic order q if the vector
fields satisfy also
[
gi, adkf .gi

]
≡ 0, k = 1, · · · , 2q − 2, i = 1, 2.

The condition of a nonzero determinant guarantees that
the optimal control can be computed from the 2q-th time
derivative of the switching function. Note that this defini-
tion requires that the two components of the control have
the same order.
We next recall the Goh and generalized Legendre-

Clebsch conditions (see [51, 56, 58]). It is worth noting
that in [58], the following higher-order necessary condi-
tions hold even when the components of the control u
have different orders.

Lemma 1 (higher-order necessary conditions) We
assume that a singular control u = (u1,u2) defined on
I is of order q, that u is optimal and not saturating, i.e.,
‖u‖ < 1. Then the Goh condition

∂

∂uj
dk

dtk
(hi)=0, k=0, 1, · · · , 2q−1, i, j = 1, 2, i �= j,

must be satisfied along I. Moreover, the matrix having as
(i, j)-th component

(−1)q
∂

∂uj
d2q

dt2q
(hi), i, j = 1, 2,

is symmetric and negative definite along I (generalized
Legendre-Clebsch Condition).

In practice, it happens that the singular controls
are often of intrinsic order 2, and that [ g1, g2]= 0,
[ g1, [ f , g2] ]= 0, and [ g2, [ f , g1] ]= 0. The conditions
given in the above definition yield [ g1, [ f , g1] ]= 0,
[ g2, [ f , g2] ]= 0, [ g1, ad2f .g1]= 0, [ g2, ad2f .g2]= 0,
〈p, [ g1, ad3f .g1] (x)〉 �= 0, 〈p, [ g2, ad3f .g2] (x)〉 �= 0, and

〈p, [g1, ad3f .g1] (x)〉〈p, [g2, ad3f .g2] (x)〉
− 〈p, [g2, ad3f .g1] (x)〉〈p, [g1, ad3f .g2] (x)〉 �= 0,

We have thus the following higher-order necessary condi-
tions, that will be used on the example in Section 7.1.

Corollary 1 We assume that the optimal trajectory x(·)
contains a singular arc, defined on the subinterval I of
[ 0, tf ], associated with a non saturating control u =
(u1,u2) of intrinsic order 2. If the vector fields satisfy
[ g1, g2]= 0, [ gi, [ f , gj] ]= 0, for i, j = 1, 2, then the Goh
condition

〈p(t), [g1, adf .g2] (x(t))〉 = 0, 〈p(t), [g1, ad2f .g2] (x(t))〉
= 〈p(t), [g2, ad2f .g1] (x(t))〉 = 0,

and the generalized Legendre-Clebsch condition (in short,
GLCC )

〈p(t), [gi, ad3f .gi] (x(t))〉 ≤ 0, i = 1, 2,

〈p(t), [g1, ad3f .g2] (x(t))〉 = 〈p(t), [g2, ad3f .g1] (x(t))〉
must be satisfied along I. Moreover, we say that the
strengthened GLCC is satisfied if we have a strict inequal-
ity above, that is, 〈p(t), [ gi, ad3f .gi] (x(t))〉 < 0.

In the next section, we recall the chattering phe-
nomenon that may happen in the optimal control prob-
lem, manely when there exit singular controls of higher
order in the problem. This phenomenon is actually not
rare as illustrated in [90] by many examples (in astronau-
tics, robotics, economics, and etc.). These examples are
mostly single input systems. The existence of chattering
phenomenon for bi-input control affine systems is also
proved in [93].

3.4 Chattering phenomenon
We call chattering phenomenon (or Fuller’s phenomenon)
the situation when the optimal control switches an infinite
number of times over a compact time interval. It is well
known that, if the optimal trajectory involves a singular
arc of higher order, then no connection with a bang arc is
possible and the bang arcs asymptotically joining the sin-
gular arc must chatter. On Fig. 8(b), the control is singular
over (t1, t2), and the control u(t) with t ∈ (t1 − ε1, t1) ∪
(t2, t2 + ε2), ε1 > 0, ε2 > 0 is chattering. The correspond-
ing optimal trajectory is called a chattering trajectory. On
Fig. 8(a), the chattering trajectory “oscillates” around the
singular part and finally “gets off" the singular trajectory
with an infinite number of switchings.
The chattering phenomenon is illustrated by the Fuller’s

problem (see [44, 63]), which is the optimal control
problem

min
∫ tf

0
x1(t)2 dt,

ẋ1(t) = x2(t), ẋ2(t) = u(t),
|u(t)| ≤ 1,
x1(0) = x10, x2(0) = x20,
x1(tf ) = 0, x2(tf ) = 0, tf free.

We define ξ =
(√

33−1
24

)1/2
as the unique positive root of

the equation ξ4+ξ2/12−1/18 = 0, and we define the sets

�+ = {(x1, x2) ∈ R
2 | x1 = ξx22, x2 < 0

}
,

R+ = {(x1, x2) ∈ R
2 | x1 < −sign(x2)ξx22

}
,

�− = {(x1, x2) ∈ R
2 | x1 = −ξx22, x2 > 0

}
,

R− = {(x1, x2) ∈ R
2 | x1 > −sign(x2)ξx22

}
.
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Fig. 8 An illustration of chattering phenomenon

The optimal synthesis of the Fuller’s problem yields the
following feedback control (see [44, 74, 88]).

u∗ =
{

1 if x ∈ R+
⋃

�+,
−1 if x ∈ R−

⋃
�−.

The control switches from u = 1 to u = −1 at points on
�− and from u = −1 to u = 1 at points on �+. The cor-
responding trajectories crossing the switching curves �±
transversally are chattering arcs with an infinite number of
switchings that accumulate with a geometric progression
at the final time tf > 0.
The optimal synthesis for the Fuller’s problem is drawn

on Fig. 9. The optimal control of the Fuller’s problem,
denoted u∗, contains a countable set of switchings of the
form

u∗(t) =
{

1 if t ∈[ t2k , t2k+1),
−1 if t ∈[ t2k+1, t2k+2] ,

where {tk}k∈N is a set of switching times that satisfies
(ti+2 − ti+1) < (ti+1 − ti), i ∈ N and converges to tf <

+∞. This means that the chattering arcs contain an infi-
nite number of switchings within a finite time interval
tf > 0.

Fig. 9 Optimal synthesis for the Fuller’s problem

4 Numerical methods in optimal control
The numerical procedures for optimal control problems
are usually classified between direct and indirectmethods.
Direct methods discretize the optimal control problem in
order to rewrite it as a nonlinear large scale optimiza-
tion problem. The process is straightforward and it can
be applied in a systematic manner to any optimal control
problem. New variables or constraints may be added eas-
ily. But achieving an accurate solution requires a careful
discretization and the convergence may be difficult due to
the large number of variables. On the other hand indirect
methods are based on the PontryaginMaximum Principle
which gives a set of necessary conditions for a local mini-
mum. The problem is reduced to a nonlinear system that
is generally solved by a shooting method using a Newton-
like algorithm. The convergence is fast and accurate, but
the method requires both an adequate starting point and
a high integration accuracy. The sensitivity to the initial
guess can be lowered by multiple shooting which breaks
the trajectory into several legs linked by interface con-
straints, at the expense of a larger nonlinear system. The
indirect method requires also prior theoretical work for
problems with singular solutions or with state constraints.
Handling these constraints by penalty method can avoid
numerical issues, but yields less optimal solutions. The
principles of both indirect and direct methods are recalled
hereafter.

4.1 Indirect methods
In indirect approaches, the Pontryagin Maximum Prin-
ciple (first-order necessary condition for optimality) is
applied to the optimal control problem in order to
express the control as a function of the state and
the adjoint. This reduces the problem to a nonlin-
ear system of n equations with n unknowns gener-
ally solved by Newton-like methods. Indirect methods
are also called shooting methods. The principle of the
simple shooting method and of the multiple shooting
method are recalled. The problem considered in this
section is (P0).
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Simple shooting method Using (6), the optimal con-
trol can be expressed as a function of the state and the
adjoint variable (x(t), p(t)). Denoting z(t) = (x(t), p(t)),
the extremal system (5) can be written under the form
ż(t) = F(z(t)). The initial and final conditions (2), the
transversality conditions (8), and the transversality condi-
tion on the Hamiltonian (7) can be written under the form
of R(z(0), z(tf ), tf ) = 0. We thus get a two boundary value
problem

ż(t) = F(t, z(t)), R(z(0), z(tf ), tf ) = 0.

Let z(t, z0) be the solution of the Cauchy problem

ż(t) = F(t, z(t)), z(0) = z0.

Then this two boundary value problem consists in find-
ing a zero of the equation

R(z0, z(tf , z0), tf ) = 0.

This problem can be solved by Newton-like methods or
other iterative methods.

Multiple shooting method The drawback of the single
shooting method is the sensitivity of the Cauchy prob-
lem to the initial condition z0 . The multiple shooting
aims at a better numerical stability by dividing the inter-
val [ 0, tf ] into N subintervals [ ti, ti+1] and considering as
unknowns the values of zi = (x(ti), p(ti)) at the beginning
of each subinterval. The application of the PMP to the
optimal control problem yields a multi-point boundary
value problem, which consists in finding Z = (p(0), tf , zi),
i = 1, · · · ,N − 1 such that the differential equation

żi(t) = F(t, z(t)) =

⎧⎪⎪⎨
⎪⎪⎩

F0(t, z(t)), t0 ≤ t ≤ t1,
F1(t, z(t)), t1 ≤ t ≤ t2,
· · · ,
FN−1(t, z(t)), tN−1 ≤ t ≤ tN ,

and the constraints

x(0) ∈ M0, x(tf ) ∈ M1, p(0) ⊥ Tx(0)M0,

p(tf ) − p0
∂g
∂x

(tf , x(tf )) ⊥ Tx(tf )M1, H(tf )

= 0, z(t−i ) = z(t+i ), i = 1, · · · ,N − 1,

are satisfied. The nodes of the multiple shooting method
may involve the switching times (at which the switching
function changes sign), and the junction times (entry, con-
tact, or exit times) with boundary arcs. In this case an a
priori knowledge of the solution structure is required.
The multiple shooting method improves the numerical

stability at the expense of a larger nonlinear system. An
adequate node number must be chosenmaking a compro-
mise between the system dimension and the convergence
domain.

4.2 Direct methods
Direct methods are so called because they address directly
the optimal control problem without using the first-order
necessary conditions yielded by the PMP. By discretizing
both the state and the control, the problem reduces to a
nonlinear optimization problem in finite dimension, also
called NonLinear Programming problem (NLP). The dis-
cretization may be carried out in many ways, depending
on the problem features. As an example we may consider
a subdivision 0 = t0 < t1 < · < tN = tf of the inter-
val [ 0, tf ]. We discretize the controls such that they are
piecewise constant on this subdivision with values in U.
Meanwhile the differential equations may be discretized
by an explicit Euler method : by setting hi = ti+1 − ti,
we get xi+1 = xi + hif (ti, xi,ui). The cost may be dis-
cretized by a quadrature procedure. These discretizations
reduces the optimal control problem P0 to a nonlinear
programming problem of the form

min
{
C(x0, · · · , xN ,u0, · · · ,uN )|xi+1 = xi + hif (ti, xi,ui),
ui ∈ U , i = 1, · · · ,N − 1, x0 ∈ M0, xN ∈ M1} .

From a more general point of view, a finite dimensional
representation of the control and of the state has to be
chosen such that the differential equation, the cost, and all
constraints can be expressed in a discrete way.
The numerical resolution of a nonlinear programming

problem is standard, by gradient methods, penalization,
quasi-Newton, dual methods, etc. (see, e.g., [9, 50, 57, 81]).
There exist many efficient optimization packages such
as IPOPT (see [86]), MUSCOD-II (see [39]), or the
Minpack project (see [66]) for many optimization
routines.
Alternative variants of direct methods are the colloca-

tion methods, the spectral or pseudo-spectral methods,
the probabilistic approaches, etc.
Another approach to optimal control problems that can

be considered as a direct method, consists in solving the
Hamilton-Jacobi equation satisfied (in the viscosity sense)
by the value function which is of the form

∂S
∂t

+ Hr

(
x,

∂S
∂x

)
= 0.

The value function is the optimal cost for the optimal con-
trol problem starting from a given point (x, t) (see [77] for
some numerical methods).

4.3 Comparison betweenmethods
The main advantages and disadvantages of the direct and
indirect methods are summarized in Table 1 (see also, e.g.,
[84, 85]).
In practice no approach is intrinsically better than the

other. The numerical method should be chosen depending
on the problem features and on the known properties of
the solution structure. These properties are derived by a
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Table 1 Pros and cons for direct and indirect methods

Direct methods Indirect methods

A priori knowledge of
the solution structure

Not required Required

Sensible to the
initial condition

Not sensible Very sensible

Handle the state
constraints

Easy Difficult

Convergence speed
and accuracy

Relatively slow and inaccurate Fast and accurate

Computational aspect Memory demanding Parallelizable

theoretical analysis using the geometric optimal control
theory.When a high accuracy is desired, as is generally the
case for aerospace problems, indirect methods should be
considered although they require more theoretical insight
and may raise numerical difficulties.
Whatever the method chosen, there are many ways to

adapt it to a specific problem (see [85]). Even with direct
methods, a major issue lies in the initialization procedure.
In recent years, the numerical continuation has become
a powerful tool to overcome this difficulty. The next
section recalls some basic mathematical concepts of the
continuation approaches, with a focus on the numerical
implementations of these methods.

5 Continuationmethods
5.1 Existence results and discrete continuation
The basic idea of continuation (also called homotopy)
methods is to solve a difficult problem step by step starting
from a simpler problem by parameter deformation. The
theory and practice of the continuation methods are well-
spread (see, e.g., [3, 71, 87]). Combined with the shooting
problem derived from the PMP, a continuation method
consists in deforming the problem into a simpler one (that
can be easily solved) and then solving a series of shoot-
ing problems step by step to come back to the original
problem.
One difficulty of homotopy methods lies in the choice

of a sufficiently regular deformation that allows the con-
vergence of the homotopy method. The starting problem
should be easy to solve, and the path between this start-
ing problem and the original problem should be easy
to model. Another difficulty is to numerically follow the
path between the starting problem and the original prob-
lem. This path is parametrized by a parameter denoted λ.
When the homotopic parameter λ is a real number and
when the path is linear3 in λ, the homotopy method is
rather called a continuation method.
The choice of the homotopic parameter may require

considerable physical insight into the problem. This
parameter may be defined either artificially according to

some intuition, or naturally by choosing physical parame-
ters of the system, or by a combination of both.
Suppose that we have to solve a system of N nonlinear

equations in N dimensional variable Z

F(Z) = 0,

where F : R
N �→ R

N is a smooth map. We define a
deformation

G : RN×[ 0, 1] �→ R
N ,

such that

G(Z, 0) = G0(Z), G(Z, 1) = F(Z),

where G0 : RN �→ R
N is a smooth map having known

zero points.
A zero path is a curve c(s) ∈ G−1(0) where s represents

the arc length. We would like to trace a zero path starting
from a point Z0 such that G(Z0, 0) = 0 and ending at a
point Zf such that G(Zf , 1) = 0.
The first question to address is the existence of zero

paths, since the feasibility of the continuation method lies
on this assumption. The second question to address is how
to numerically track such zero paths when they exist.

Existence of zero paths The local existence of the zero
paths is answered by the implicit function theorem. Some
regularity assumptions are needed, as in the following
statement (which is the contents of [46, Theorem 2.1]).

Theorem 3 (Existence of the zero paths) Let � be an
open bounded subset of R

N and let the mapping G :
�×[ 0, 1] �→ R

N be continuously differentiable such that:

• Given any
(Z, λ) ∈ {(Z, λ) ∈ �×[ 0, 1] | G(Z, λ) = 0}, the
Jacobian matrix

G′ =
(

∂G
∂Z1

, · · · , ∂G
∂ZN

,
∂G
∂λ

)
,

is of maximum rank N;
• Given any

Z ∈ {Z ∈ � | G(Z, 0) = 0}∪{Z ∈ � | G(Z, 1) = 0},
the Jacobian matrix

G′ =
(

∂G
∂Z1

, · · · , ∂G
∂ZN

)

is of maximum rank N;

Then {(Z, λ) ∈ �×[ 0, 1] | G(Z, λ) = 0} consists of the
paths that is either a loop in �̄×[ 0, 1] or starts from a
point of ∂�̄×[ 0, 1] and ends at another point of ∂�̄×[ 0, 1],
where ∂�̄ denotes the boundary of �̄.
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This means that the zero path is diffeomorphic to a cir-
cle or the real line. The possible paths and impossible
paths are shown in Fig. 10 (borrowed from [46, 48]).
Now we provide basic arguments showing the feasibil-

ity of the continuation method (see Section 4.1 of [85] for
more details).
Consider the simplified optimal control problem P0

with M = R
n, M0 = {x0}, M1 = {x1} and U = R

m.
We assume that the real parameter λ ∈[ 0, 1] is increas-
ing monotonically from 0 to 1. Under these assumptions,
we are to solve a family of optimal control problems
parameterized by λ, i.e.,

min
Ex0,tf ,λ(uλ)=x1

Ctf ,λ(u), (11)

where E is the end-point mapping defined in Definition 1.
We assume moreover that, along the continuation pro-

cedure:

(1) there are no minimizing abnormal extremals;
(2) there are no minimizing singular controls: by

Definition 3, the control u is not singular means that
the mapping dEx0,tf ,λ(u) is surjective;

(3) there are no conjugate points (by Definition 4 the
quadratic form Qtf is not degenerate). The absence of
conjugate point can be numerically tested
(see, e.g., [15]).

We will see that these assumptions are essential for the
local feasibility of the continuation methods.
According to the Lagrange multipliers rule, especially

the first-order condition (4), if uλ is optimal, then
there exists (ψλ,ψ0

λ) ∈ R
n × R\ {(0, 0)} such that

ψλdEx0,tf ,λ(uλ)+ψ0
λdCtf ,λ(u) = 0. Since we have assumed

that there are no minimizing abnormal extremals in the
problem and (ψλ,ψ0

λ) is defined up to a multiplicative
scalar, we can set ψ0

λ = −1. Defining the Lagrangian by

Ltf ,λ(u,ψ) = ψλEx0,tf ,λ(u) − Ctf ,λ(u),

we seek (uλ,ψλ) such that

G(u,ψ , λ) =
(

∂Ltf ,λ
∂u (u,ψ)

Ex0,tf ,λ(u) − x1

)
= 0.

Let (uλ̄,ψλ̄, λ̄) be a zero of G and assume that G is of
class C1. Then according to Theorem 3, we require the
Jacobian ofGwith respect to (u,ψ) at the point (uλ̄,ψλ̄, λ̄)

to be invertible. More precisely, the Jacobian of G is
(

Qtf ,λ dEx0,tf ,λ(u)∗
dEx0,tf ,λ(u) 0

)
, (12)

where Qtf ,λ is the Hessian
∂2Ltf ,λ

∂2u (u,ψ ,ψ0) restricted to

ker
∂Ltf ,λ

∂u , and dEx0,tf ,λ(u)∗ is the transpose of dEx0,tf ,λ(u).
We observe that the matrix (12) is invertible if and

only if the linear mapping dEx0,tf ,λ(u) is surjective and
the quadratic form Qtf ,λ is non-degenerate. These proper-
ties correspond to the absence of any minimizing singular
control and conjugate points, which are the assumptions
done for the local feasibility of the continuation proce-
dure.
The implicit function argument above is done on the

control. In practice the continuation procedure is rather
done on the exponential mapping (see (13)) and it consists
in tracking a path of initial adjoint vectors p0,λ. Therefore
we parameterize the exponential mapping by λ, and thus
problem (11) is to solve

expx0,λ(tf , p0,λ) = x1. (13)

On the one hand, according to the PMP, the optimal
control u satisfies the extremal Eqs. 6, and thus uλ =
uλ(t, p0,λ) is a function of the initial adjoint p0,λ. On the
other hand, the Lagrange multipliers are related to the
adjoint vector by p(tf ) = ψ , and thus ψλ = ψλ(p0,λ) is
also a function of p0,λ. Therefore, the shooting function
defined by S(p0, λ) = G(u(p0),ψ(p0), λ) has an invert-
ible Jacobian if the matrix (12) is invertible. We conclude

Fig. 10 Possible zero paths (left) and impossible zero paths (right)
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then that the assumptions (1)-(3) mentioned above are
sufficient to ensure the local feasibility.
Despite of local feasibility, the zero path may not

be globally defined for any λ ∈[ 0, 1]. The path could
cross some singularity or diverge to infinity before
reaching λ = 1.
The first possibility can be eliminated by assuming (2)

and (3) over all the domain � and for every λ ∈[ 0, 1].
The second possibility is eliminated if the paths remain
bounded or equivalently by the properness of the expo-
nential mapping (i.e., the initial adjoint vectors p0,λ that
are computed along the continuation procedure remain
bounded uniformly with respect to λ). According to [21,
82], if the exponential mapping is not proper, then there
exists an abnormal minimizer. By contraposition, if one
assumes the absence of minimizing abnormal extremals,
then the required boundedness follows.
For the simplified problem (11), where the controls are

unconstrained and the singular trajectories are the projec-
tions of abnormal extremals, if there are no minimizing
singular trajectory nor conjugate points over �, then the
continuation procedure (13) is globally feasible on [ 0, 1].
In more general homotopy strategies, the homotopic

parameter λ is not necessarily increasing monotonically
from 0 to 1. There may be turning points (see, e.g., [87])
and it is preferable to parametrize the zero path by the
arc length s. Let c(s) = (Z(s), λ(s)) be the zero path such
that G(c(s)) = 0. Then, a turning point of order one is the
point where λ′(s̄) = 0, λ′′(s̄) �= 0. In [27], the authors indi-
cate that if λ = λ(s̄) is a turning point of order one, then
the corresponding final time tf is a conjugate time, and
the corresponding point Ex0,tf ,λ(u(x0, p0, tf , λ)) is the cor-
responding conjugate point 4. By assuming the absence of
conjugate points over � for all λ ∈[ 0, 1], the possibility of
turning points is discarded.
Unfortunately, assuming the absence of singularities

is in general too strong, and weaker assumptions do
not allow concluding to the feasibility of the continua-
tion method. In the literature, there are essentially two
approaches to tackle this difficulty. The first one is of
local type. One detects the singularities or bifurcations
along the zero path (see, e.g., [3]). The second one is of
global type, concerning the so-called globally convergent
probability-one homotopy method. We refer the readers
to [35, 87] for more details concerning this method.

Numerical tracking the zero paths There exists many
numerical algorithms to track a zero path. Among these
algorithms, the simplest one is the so called discrete
continuation or embedding algorithm. The continuation
parameter denoted λ, is discretized by 0 = λ0 < λ1 <

· · · < λnl = 1 and the sequence of problems G(Z, λi) = 0,
i = 1, · · · , nl is solved to end up with a zero point of F(Z).

If the increment �λ = λi+1 − λi is small enough, then the
solution Zi associated to λi such that G(Zi, λi) = 0 is gen-
erally close to the solution of G(Z, λi+1) = 0. The discrete
continuation algorithm is detailed in Algorithm 1.

Algorithm 1: Discrete continuation algorithm
Result: The solution of the discrete continuation
initialization Z = Z0, λ0 = 0, �λ ∈ (�λmin,�λmax);
while λ ≤ 1 and �λmin ≤ �λ ≤ �λmax do

�λ = min(�λ, 1 − λ);
λ̃ = λ + �λ;
Find the solution Z̄ such that G(Z̄, λ̃) = 0;
if successful then

Z = Z̃;
λ = λ̄;
�λ = 2 � λ;

else
�λ = �λ/2;

end
end
if successful then

The discrete continuation is successful;
else

The discrete continuation has failed;
end

In some cases the parameter λ may be ill suited to
parameterize the zero path, and thus causes a slow
progress or even a failure of the discrete continuation.
Two enhancements (predictor-corrector methods and
piecewise-Linear methods) have been proposed in the
literature.

5.2 Predictor-corrector (PC) continuation
A natural parameter for the zero curve (Z, λ) is the arc-
length denoted s.
The zero curve parameterized by the arc length s is

denoted

c(s) = (Z(s), λ(s)).

Differentiating G(Z(s), λ(s)) = 0 with respect to s, we
obtain

JG t(JG)=0, ‖t(JG)‖=1, c(Z(0), 0)=(Z(0), 0), (14)

where JG = ∂G(Z(s),λ(s))
∂(Z,λ)

is the Jacobian, and t(JG) = dc(s)
ds

is the tangent vector of the zero path c(s).
If we know a point of this curve (Z̄(si), λ̄(si)), and assum-

ing that c(s) is not a critical point (i.e., t(JG) is not null),we
can predict a new zero point (Z̃(si+1), λ̃(si+1)) by

(Z̃(si+1), λ̃(si+1)) = (Z(si), λ(si)) + hs t(JG), (15)
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where hs is the step size on s. As shown in Fig. 11, if the
step size hs is sufficiently small, the prediction step yields
a point (Z̃(si+1), λ̃(si+1)) close to a point (Z̄(si+1), λ̄(si+1))
on the curve, such thatG(c(si+1)) = G(Z̄(si+1), λ̄(si+1)) =
0. The correction step consists in coming back on the
curve using a Newton-like method.
The PC continuation is described by Algorithm 2.

Algorithm 2: Prediction-Corrector continuation
Result: The solution of the PC continuation
initialization Z = Z0, hs > 0, λ0 = 0,
�λ ∈ (�λmin,�λmax);
while λ ≤ 1 and �λmin ≤ �λ ≤ �λmax do

(Predictor) Predict a point (Z̃, λ̃) according to (15);
(Corrector) Find the solution (Z̄, λ̄) to G(Z̃, λ̃) = 0;
if successful then

(Z, λ) = (Z̄, λ̄);
Increase the step length hs;

else
Reduce the step length hs;

end
end
if successful then

The continuation is successful;
else

The continuation has failed;
end

When the optimal control problem is regular (in the
sense of the Legendre condition are defined) and the
homotopic parameter is a scalar, one can use the so
called differential continuation or differential pathfollow-
ing. This method consists in integrating accurately t(JG)

satisfying (14) (see details in [26]). The correction step
is replaced by the mere integration of an ordinary differ-
ential equation with the help of automatic differentiation
(see, e.g., [5, 29]).

5.3 Piecewise-linear (PL) continuation
The main advantage of the PL method is that it only needs
the zero paths to be continuous (smoothness assumption

Fig. 11 PC continuation

of G is not necessary). For a detailed description of the PL
methods, we refer the readers to [3, 4, 47].
Here we present the basic idea of the PLmethods, which

are also referred to as a simplicial methods. A PL continu-
ation consists of following exactly a piecewise-linear curve
cT (s) that approximates the zero path c(s) ∈ G−1(0).
The approximation curve cT (s) is a polygonal path rela-

tive to an underlying triangulation T of RN+1, which is a
subdivision of RN+1 into (N + 1)-simplices. 5
Then, for anymapG : RN+1 �→ R

N , the piecewise linear
approximation GT to G relative to the triangulation T of
R
N+1 is the unique map defined by:

(1) GT (v) = G(v) for all vertices of T ;
(2) for any N + 1-simplex σ =[ v1, v2, · · · , vN+2]∈ T ,

the restriction GT |σ of GT to σ is an affine map.

Consequently a point Z = ∑N+2
i=1 αivi (here αi are

barycentric coordinates that satisfy
∑N+2

i=1 αi = 1 and
αi ≥ 0) in a N + 1-simplex satisfies

GT (Z) = G
(N+2∑

i=1
αivi

)
=

N+2∑
i=1

αiG(vi).

The setG−1
T (0) contains a polygonal path cT : R �→ R

N+1

which approximates the path c. Tracking such a path is
carried out via PL-steps similar to the steps used in lin-
ear programming methods such as the Simplex Method.
Figure 12 portrays the basic idea of a PL method.
In aerospace applications, where the continuation pro-

cedure is in general differentiable, the PL methods are
usually not as efficient as the PC methods or the dif-
ferential continuation that we present in next sections.
Nevertheless when singularities exist in the zero path, the
PL method is probably the most efficient one.
In the next section, we recall briefly some successful

applications of the geometric optimal control techniques
and the numerical continuation to trajectory problems,
including orbital transfer problems and atmospheric

Fig. 12 PL continuation
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reentry problems. Note that attitude problems, namely
the controllability problems, have also been treated by
geometric control theory, see e.g. [19, 38]. We refer the
readers to the book [20] and its reference for more details.

6 Applications to trajectory problems
In this section, we recall applications of the geometric
optimal control theory and numerical continuation
methods in trajectory problems, namely in orbital
transfer problems and in atmospheric reentry prob-
lems. The aim of this section is to show that the
continuation and the geometric optimal control
theory have been applied successfully to trajectory
problems. Indeed, they are powerful and efficient
tools to combine with traditional optimal control
theory.

6.1 Orbital transfer problems
The orbital transfer problem consists in steering the
engine from an initial orbit to a final one while minimiz-
ing either the duration or the consumption. This problem
has been widely studied in the literature, and the solu-
tion algorithms involve direct methods as well as indirect
methods. The reader is referred to [6] and [31] for a list of
methods and references. The dynamics is modelled by the
controlled Kepler equations

r̈(t) = −r(t)
μ

‖r(t)‖3 + T(t)
m(t)

,

ṁ(t) = −β‖T(t)‖,
‖T(t)‖ ≤ Tmax,

where r(·) is the position of the spacecraft,μ is the gravita-
tional constant of the planet, T(·) ≤ Tmax is the bounded
thrust, and m(·) is the mass with β a constant depending
on the specific impulse of the engine.
Controllability properties ensuring the feasibility of the

problem have been studied in [15, 20], based on the anal-
ysis of Lie algebra generated by the vector fields of the
system.
The minimum time low thrust transfer is addressed

for example in [28]. It is observed that the domain of
convergence of the Newton-type method in the shoot-
ing problem becomes smaller when the maximal thrust
decreases. Therefore, a natural continuation process con-
sists in starting with larger values of the maximal thrust
and then decreasing step by step the maximal thrust. In
[28], the authors started with the maximal thrust Tmax =
60N and achieved the continuation up to Tmax = 0.14N .
The minimum fuel consumption orbit transfer prob-

lem has also been widely studied. With the cost
functional

∫ tf
0 ‖T(t)‖dt, the problem is more difficult

than minimizing the time, since the optimal control
is discontinuous. In [48, 49], the authors propose a
continuation on the cost functional, starting from the
minimum-energy problem. The cost functional is defined
by
∫ tf
0
(
(1 − λ)‖T(t)‖2 + λ‖T(t)‖) dt, where λ ∈[ 0, 1] is

the homotopy parameter. When λ = 0 (minimum-
energy), the control derived from the PMP is continuous
and the shooting problem is thus easier to solve. The
authors prove the existence of a zero path from λ = 0
and to λ = 1. This continuation approach is later applied
in [33] for studying the L1-minimization of trajectory
optimization problem. Such minimum-fuel low-thrust
transfers are very important for deep space explorations,
since all the propellant must be carried on board by the
satellite. Similar continuation procedures have also been
applied to the well-known Goddard’s problem, and to its
three-dimensional variants ([12, 14]). The possible singu-
lar arcs (along which the norm of the thrust is neither zero
nor maximal) have thus been analyzed and numerically
computed.
Continuation procedures are also valuable for high-

thrust orbital transfer problems. In [31], the authors pro-
posed a continuation procedure starting from a flat Earth
model with constant gravity. The variable gravity and the
Earth curvature are introduced step by step by homo-
topy parameters. The theoretically analysis of the flat
Earth model shows that the solution structure consists in
a single boost followed by a coast arc. This helps solv-
ing the starting problem in a direct way, before coming
back by continuation to the real round Earth problem. The
round Earth solution exhibits a different solution struc-
ture (boost – coast – boost) which appears progressively
along the continuation process.

6.2 Atmospheric reentry problem
An atmospheric reentry typically begins at an altitude of
120km and ends with a landing phase. The final landing
phase until the touchdown is generally studied apart and it
is highly dependent on the mission specifications (ground
or sea landing, manned or unmanned flight, etc). The so-
called atmospheric leg aims at reducing the vehicle energy
before the final landing phase. No fuel is used and the
braking has to be fully achieved by aerodynamics while
satisfying the state constraints, in particular on the ther-
mal flux. The final conditions specify a target position at
a low altitude, typically less than 20 km.
The vehicle is considered as a glider submitted to

the gravity and the aerodynamic forces, the control u
being the bank angle and possibly the angle of attack.
The optimal control problem consists thus in steering
the space shuttle from given entry conditions to tar-
geted final conditions while minimizing the total heat
and satisfying state constraints on the thermal flux, the
normal acceleration, and the dynamic pressure. We refer
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the readers to [22, 83] for a formulation of this prob-
lem. The control u acts on the lift force orientation,
changing simultaneously the descent rate and the heading
angle.
A practical guidance strategy consists in following the

constraint boundaries, successively : thermal flux, normal
acceleration, and dynamic pressure. This strategy does
not care about the cost functional and it is therefore
not optimal. Applying the Pontryagin Maximum Prin-
ciple with state constraints is not promising due to a
narrow domain of convergence of the shooting method.
Finding a correct guess for the initial adjoint vector
proves quite difficult. Therefore direct methods are gen-
erally preferred for this atmospheric reentry problem
(see, e.g., [6, 7, 69]).
Here we recall two alternative approaches to address the

problem by indirect methods.
The first approach is to analyze the control system

using geometric control theory. For example, in [17, 18,
83], a careful analysis of the control system provides a
precise description of the optimal trajectory. The result-
ing problem reduction makes it tractable by the shooting
method. More precisely, the control system is rewrit-
ten as a single-input control-affine system in dimension
three under some reasonable assumptions. Local optimal
syntheses are derived from extending existing results in
geometric optimal control theory. Based on perturbation
arguments, this local nature of the optimal trajectory is
then used to provide an approximation of the optimal tra-
jectory for the full problem in dimension six, and finally
simple approximation methods are developed to solve the
problem.
A second approach is to use the continuation method.

For example, in [55], the problem is solved by a shooting
method, and a continuation is applied on the maximal
value of the thermal flux. It is shown in [11, 54] that
under some appropriate assumptions, the change in
the structure of the trajectory is regular, i.e., when a
constraint becomes active along the continuation, only
one boundary arc appears. Nevertheless it is possible
that an infinite number of boundary arcs appear (see,
e.g., [72]). This phenomenon is possible when the con-
straint is of order three at least. By using a properly
modified continuation procedure, the reentry prob-
lem was solved in [55] and the results of [18] were
retrieved.
Now we have shown by examples in trajectory prob-

lems that the geometric optimal control theory can be
used to analyze the problem and the numerical continua-
tion can be used to design efficient numerical resolution
methods. In the next section, we will show step by step by
a nonacademic attitude-trajectory problem how the anal-
ysis and the design of numerical continuation procedure
are done.

7 Application to attitude-trajectory optimal
control

In this section, the nonacademic attitude-trajectory opti-
mal control problem for a launch vehicle (classical and
airborne) is analyzed in detail. Through this exam-
ple, we illustrate how to analyze the (singular and
regular) extremals of the problem with Lie and Pois-
son brackets, and how to elaborate numerical contin-
uation procedures adapted to the solution structure.
Indeed the theoretical analysis reveals the existence of
a chattering phenomenon. Being aware of this feature
is essential to devise an efficient numerical solution
method.

7.1 Geometric analysis and numerical continuations for
optimal attitude and trajectory control problem (PS)

The problem is formulated in terms of dynamics, control,
constraints and cost. The Pontryagin Maximum Princi-
ple and the geometric optimal control are then applied
to analyze the extremals, revealing the existence of the
chattering phenomenon.

7.1.1 Formulation of (PS) and difficulties
Minimum time attitude-trajectory control problem
(PS) In this section, we formulate an attitude-trajectory
minimum time control problem, denoted by (PS).
The trajectory of a launch vehicle is controlled by

the thrust which can only have limited deflection angles
with the vehicle longitudinal axis. Controlling the thrust
direction requires controlling the vehicle attitude. When
the attitude dynamics is slow, or when the orienta-
tion maneuver is large, this induces a coupling between
the attitude motion and the trajectory, as explained in
Section 6.
When this coupling is not negligible the dynamics and

the state must account simultaneously for the trajectory
variables (considering the launch vehicle as a mass point)
and the attitude variables (e.g., the Euler angles or the
quaternion associated to the body frame).
The objective is then to determine the deflection angle

law driving the vehicle from given initial conditions to the
desired final attitude and velocity, taking into account the
attitude-trajectory coupling.
The typical duration of such reorientation maneu-

vers is small compared to the overall launch trajectory.
We assume therefore that the gravity acceleration
is constant and we do not account for the position
evolution. The aerodynamical forces (lift and drag)
are supposed negligible in the first approach, and
they will be introduced later in the system mod-
elling. The dynamics equations in an inertial frame
(O, x, y, z) are
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v̇x = a sin θ cosψ + gx,
v̇y = −a sinψ + gy,
v̇z = a cos θ cosψ + gz,
θ̇ = (ωx sinφ + ωy cosφ

)
/ cosψ ,

ψ̇ = ωx cosφ − ωy sinφ,
φ̇ = (ωx sinφ + ωy cosφ

)
tanψ ,

ω̇x = −bu2,
ω̇y = bu1,

(16)

where (vx, vy, vz) represents the velocity, (gx, gy, gz) repre-
sents the gravity acceleration, θ (pitch), ψ (yaw), φ (roll)
are the Euler angles, a is the ratio of the thrust force to
the mass, and b is the ratio of the thrust torque to the
transverse inertia of the launcher (a and b are assumed
constant). u = (u1,u2) ∈ R

2 is the control input of the
system satisfying |u| = u21 + u22 ≤ 1. See more details of
the model and the problem formulation in [92].
Defining the state vector as x = (vx, vy, vz, θ ,ψ ,φ,

ωx,ωy), we write the system (16) as the bi-input control-
affine system

ẋ = f (x) + u1g1(x) + u2g2(x), (17)

where the controls u1 and u2 satisfy the constraint u21 +
u22 ≤ 1, and the vector fields f, g1 and g2 are defined by

f = (a sin θ cosψ + gx
) ∂

∂vx
+ (−a sinψ + gy

) ∂

∂vy

+ (a cos θ cosψ + gz
) ∂

∂vz

+ (ωx sinφ + ωy cosφ
)
/ cosψ

∂

∂θ

+ (ωx cosφ − ωy sinφ
) ∂

∂ψ

+ tanψ
(
ωx sinφ + ωy cosφ

) ∂

∂φ
, g1

= b
∂

∂ωy
, g2 = −b

∂

∂ωx
.

(18)

We define the target set (submanifold of R8)

M1S =
{
(vx, vy, vz, θ ,ψ ,φ,ωx,ωy) ∈ R

8 | vz sinψf

+ vy cos θf cosψf = 0, vz sin θf

− vx cos θf = 0, θ = θf , ψ = ψf , φ

= φf , ωx = ωxf , ωy = ωyf

}
,

(19)

where θf , ψf , φf , ωxf and ωyf are desired final values of the
state variables.
The first two conditions in (19) define a final velocity

direction parallel to the longitudinal axis of the launcher,
or in other terms a zero angle of attack.
The problem (PS) consists in steering the bi-input

control-affine system (17) from x(0) = x0 =

(vx0 , vy0 , vz0 , θ0,ψ0,φ0,ωx0 ,ωy0) ∈ R
8 to the final target

M1S in minimum time tf , with controls satisfying the con-
straint u21+u22 ≤ 1. The fixed initial condition is x(0) = x0
and the final condition of problem PS is

x(tf ) ∈ M1S, (20)

The initial and final conditions are also called terminal
conditions.

Difficulties The problem (PS) is difficult to solve directly
due to the coupling of the attitude and the trajectory.
The system is of dimension 8 and its dynamics contains
both slow (trajectory) and fast (attitude) components.
In fact, the attitude movement is much faster than the
trajectory movement. This observation is being particu-
larly important in order to design an appropriate solution
method. The idea is to define a simplified starting problem
and then to apply continuation techniques. However the
essential difficulty of this problem is the chattering phe-
nomenonmaking the control switch an infinite number of
times over a compact time interval. Such a phenomenon
typically occurs when trying to connect bang arcs with
higher-order singular arcs (see, e.g., [44, 63, 90, 91], or
Section 3.4).
In a preliminary step, we limited ourselves to the pla-

nar problem, which is a single-input control affine system.
This planar problem is close to real flight conditions of a
launcher ascent phase. We have used the results of M.I.
Zelikin and V.F. Borisov [90, 91] to understand the chat-
tering phenomenon and to prove the local optimality of
the chattering extremals. We refer the readers to [93] for
details.
In a second step using the Pontryagin Maximum Prin-

ciple and the geometric optimal control theory (see
[1, 74, 85]), we have established an existence result of
the chattering phenomenon for a class of bi-input control
affine systems and we have applied the result to the prob-
lem (Ps). More precisely, based on Goh and generalized
Legendre-Clebsch conditions, we have proved that there
exist optimal chattering arcs when connecting the regular
arcs with a singular arc of order two.

7.1.2 Geometric analysis for (PS)
Singular arcs and necessary conditions for opti-
mality The first step to analyze the problem is to
apply the PMP (see Theorem 1). Let us consider
the system (17), with the vector fields f, g1 and g2
defined by (18). According to the PMP, there must
exist an absolutely continuous mapping p(·) =
(pvx(·), pvy(·), pvz(·), pθ (·), pψ(·), pφ(·), pωx(·), pωy(·))
defined on [ 0, tf ], such that p(t) ∈ T∗

x(t)M (cotangent
space) for every t ∈[ 0, tf ], and a real number p0 ≤ 0, with
(p(·), p0) �= 0, such that ẋ(t) = ∂H

∂p (x(t), p(t), p0,u(t)) and
almost everywhere on [ 0, tf ]
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ṗvx = 0, ṗvy = 0, ṗvz = 0,
ṗθ = −a cosψ

(
pvx cos θ − pvz sin θ

)
,

ṗψ = a sinψ sin θpvx + a cosψpvy + a cos θ sinψpvz
− sinψ

(
ωx sinφ + ωy cosφ

)
/ cos2 ψpθ

− (ωx sinφ + ωy cosφ
)
/ cos2 ψpφ ,

ṗφ = − (ωx cosφ − ωy sinφ
)
/ cosψpθ

+ (ωx sinφ + ωy cosφ
)
pψ

− tanψ
(
ωx cosφ − ωy sinφ

)
pφ ,

ṗωx = − sinφ/cosψpθ − cosφpψ − sinψ sinφ/cosψpφ ,
ṗωy = − cosφ/cosψpθ + sinφpψ − sinψ cosφ/cosψpφ ,

The Hamiltonian of the optimal control problem (PS) is
defined by

H(x, p, p0,u) = h0(x, p) + u1h1(x, p) + u2h2(x, p) + p0,

with h0(x, p) = 〈p, f (x)〉, h1(x, p) = 〈p, g1(x)〉, and
h2(x, p) = 〈p, g2(x)〉. With a slight abuse of notation as
before, we will denote hi(t) = hi(x(t), p(t)), i = 0, 1, 2.
Note that the abnormal extremals correspond to p0 = 0

in the PMP.We suspect the existence of optimal abnormal
extremals in (PS) for certain (nongeneric) terminal con-
ditions. In the planar version of (PS) studied in [93], it
is proved that there is no abnormal minimizer (p0 �= 0)
if the optimal control switches at least two times. We
expect that the same property is still true here.We are able
to prove that the singular extremals of (PS) are normal,
however, we are not able to establish a clear relationship
between the number of switchings and the existence of
abnormal minimizers as in [93]. Thus, in our numerical
simulations later, we will assume that there is at least one
normal extremal for problem (PS) and compute it.
The maximization condition of the PMP yields, almost

everywhere on [ 0, tf ],

(u1(t),u2(t)) = (h1(t), h2(t))√
h1(t)2 + h2(t)2

= 	(t)
‖	(t)‖ ,

whenever 	(t) = (h1(t), h2(t)) = (bpωy(t),−bpωx(t)) �=
(0, 0). The function 	 is of class C1 and is called (as well
as its components) the switching function. The switching
manifold � is the submanifold of R16 of codimension two
defined by � = {z = (x, p) ∈ R

16 | pωx = pωy = 0
}
.

The transversality condition p(tf ) ⊥ Tx(tf )M1 yields

pvx(tf ) sin θf cosψf − pvy(tf ) sinψf

+ pvz(tf ) cos θf cosψf = 0,
(21)

where Tx(tf )M1 is the tangent space to M1 at the point
x(tf ). The final time tf being free and the system being
autonomous, we have also h0(x(t), p(t)) + ‖	(t)‖ + p0 =
0, ∀t ∈[ 0, tf ].
We say that an arc (restriction of an extremal to a subin-

terval I) is regular if ‖	(t)‖ �= 0 along I. Otherwise, the

arc is said to be singular. An arc that is a concatenation
of an infinite number of regular arcs is said to be chat-
tering. The chattering arc is associated with a chattering
control that switches an infinite number of times, over a
compact time interval. A junction between a regular arc
and a singular arc is said to be a singular junction.
We next compute the singular control, since it is impor-

tant to understand and explain the occurrence of chatter-
ing. The usual method for to computing singular controls
is to differentiate repeatedly the switching function until
the control explicitly appears. Note that here we need to
use the notion of Lie bracket and Poisson bracket (see
Section 3.2).
Assuming that ‖	(t)‖ = 0 for every t ∈ I, i.e., h1(t) =

h2(t) = 0, and differentiating with respect to t, we get,
using the Poisson brackets,

ḣ1 = {h0, h1} + u2 {h2, h1} = 0,
ḣ2 = {h0, h2} + u1 {h1, h2} = 0,

along I. If the singular arc is optimal and the associated
singular control is not saturating, then the Goh condition
(see [51], see also Theorem 2) {h1, h2} = 〈p, [ g1, g2] (x)〉 =
0 must be satisfied along I. Therefore we get that

ḣ1 = {h0, h1} = 〈p, [ f , g1] (x)〉 = 0,
ḣ2 = {h0, h2} = 〈p, [ f , g2] (x)〉 = 0,

along I.
Since the vector fields g1 and g2 commute, i.e., [ g1, g2]=

0, we get by differentiating again that

ḧ1={h0, {h0, h1}}+ u1 {h1, {h0, h1}} + u2 {h2, {h0, h1}} = 0,
ḧ2={h0, {h0, h2}}+ u1 {h1, {h0, h2}} + u2 {h2, {h0, h2}}= 0.

Assuming that

det�1 = det
({h1, {h0, h1}} {h2, {h0, h1}}

{h1, {h0, h2}} {h2, {h0, h2}}
)

�= 0

along I, we obtain that

u1 = (− {h0, {h0, h1}} {h2, {h0, h2}}
+ {h0, {h0, h2}} {h2, {h0, h1}}) / det�1,

u2 = ({h0, {h0, h1}} {h1, {h0, h2}}
− {h0, {h0, h2}} {h1, {h0, h1}}) / det�1,

so that the control u = (u1,u2) is said of order 1. u1 and
u2 must moreover satisfy the constraint u21 + u22 ≤ 1.
However, in problem (PS), we have [ g1, [ f , g2] ]= 0,

[ g2, [ f , g1] ]= 0, and {h1, {h0, h1}} = {h2, {h0, h2}} =
0 along I, which indicates that the singular control is
of higher order. According to the Goh condition (see
[51, 58], see also Definition 5 and Theorem 2), we must
have

{
hi,
{
h0, hj

}} = 0, i, j = 1, 2, i �= j, and we can
go on differentiating. It follows from [ g1, [ f , g1] ]= 0 and
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[ g2, [ f , g2] ]= 0 that[
gi, ad2f .gi

]] = [gi, [f , ad f .gi]]
= − [f , [ad f .gi, gi]]

− [ad f .gi, [gi, f ]] = 0, i = 1, 2,

and we get

h(3)
1 = {h0, ad2h0.h1}+ u2

{
h2, ad2h0.h1

} = 0,

h(3)
2 = {h0, ad2h0.h2}+ u1

{
h1, ad2h0.h2

} = 0.

Using [ g1, g2]= 0 and [ gi, [ f , gi] ]= 0, i = 1, 2, it follows
that [ gk , [ gi, [ f , gj] ]= 0, i, j, k = 1, 2 and

d
dt

{h2, {h0, h1}} = d
dt

{h1, {h0, h2}}
= {h0, {h1, {h0, h2}}} = 0.

This is a new constraint along the singular arc. The time
derivative of this constraint is equal to zero and therefore
does not induce any additional constraint.
The higher-order necessary conditions for optimality

(see Definition 5) state that an optimal singular con-
trol can only appear explicitly within an even derivative.
Therefore we must have{

h2, ad2h0.h1
} = {h1, ad2h0.h2} = 0

along I. Accordingly, h(3)
i = 0, i = 1, 2, gives three

additional constraints along the singular arc:{
h0, ad2h0.h1

} = {h0, ad2h0.h2} = {h2, ad2h0.h1}
= {h1, ad2h0.h2} = 0.

By differentiating the first two constraints with respect to
t, we get

h(4)
1 = ad4h0.h1 + u1

{
h1, ad3h0.h1

}
+ u2

{
ad2h0.h1, ad h0.h2

} = 0,

h(4)
2 = ad4h0.h2 + u1

{
ad2h0.h2, ad h0.h1

}
+ u2

{
h2, ad3h0.h2

} = 0.

Assuming that
{
hi, ad3h0.hi

}
< 0 for i = 1, 2 (generalized

Legendre-Clebsch condition, see Corollary 1) and since{
ad2h0.h1, ad h0.h2

} = {ad2h0.h2, ad h0.h1} = ad4h0.h1
= ad4h0.h2 = 0

along I for problem (PS), the singular control is

u1 = 0, u2 = 0.

The singular control u = (u1,u2) is then said of intrinsic
order two (see the precise definition in Definition 5).
Let us assume that (x(·), p(·), p0,u(·)) is a singular arc of

(PS) along the subinterval I, which is locally optimal in C0

topology. Then we have u = (u1,u2) = (0, 0) along I, and
u is a singular control of intrinsic order two. Moreover,
we can establish (see the proof in [92]) that this singular

extremal must be normal, i.e., p0 �= 0, and according to
Lemma 1, the Generalized Legendre-Clebsch Condition
(GLCC) along I takes the form

a + gx sin θ cosψ − gy sinψ + gz cos θ cosψ ≥ 0, (22)

We define next the singular surface S, which is filled by
singular extremals of (PS), by

S =
{
(x, p) | ωx = ωy = 0, pθ = pψ = pφ = pωx

= pωy = 0, pvx = tan θpvz , pvz

= −p0 cos θ cosψ

a + gx sin θ cosψ − gy sinψ + gz cos θ cosψ
, pvy

= − tanψ/ cos θpvz
}
.

(23)

We will see later that the solutions of the problem of order
zero (defined in the following Section) lie on this singular
surface S.
Finally, the possibility of chattering in problem (PS) is

demonstrated in [92]. A chattering arc appears when try-
ing to connect a regular arc with an optimal singular arc.
More precisely, let u be an optimal control, solution of
(PS), and assume that u is singular on the sub-interval
(t1, t2) ⊂[ 0, tf ] and is regular elsewhere. If t1 > 0 (resp., if
t2 < tf ) then, for every ε > 0, the control u switches an
infinite number of times over the time interval [ t1 − ε, t1]
(resp., on [ t2, t2 + ε]). The condition (22) was required in
the proof.
The knowledge of chattering occurrence is essential for

solving the problem (PS) in practice. Chattering raises
indeed numerical issues that may prevent any conver-
gence, especially when using an indirect approach (shoot-
ing). The occurrence of the chattering phenomenon in
(PS) explains the failure of the indirect methods for cer-
tain terminal conditions (see also the recent paper [30]).

7.1.3 Indirect method and numerical continuation
procedure for (PS)

The principle of the continuation procedure is to start
from the known solution of a simpler problem (called
hereafter the problem of order zero) in order to initial-
ize an indirect method for the more complicated problem
(PS). This simple low-dimensional problem will then be
embedded in higher dimension, and appropriate continu-
ations will be applied to come back to the initial problem.
The problem of order zero defined below considers only

the trajectory dynamics which is much slower than the
attitude dynamics. Assuming an instantaneous attitude
motion simplifies greatly the problem and provides an
analytical solution. It is worth noting that the solution of
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the problem of order zero is contained in the singular sur-
face S filled by the singular solutions for (PS), defined by
(23).
Auxiliary problems We define the problem of order zero,
denoted by (P0) as the “subproblem” of problem (PS)
reduced to the trajectory dynamics. The control for this
problem is directly the vehicle attitude, and the attitude
dynamics is not simulated.
Denoting the vehicle longitudinal axis as �e and consid-

ering it as the control vector (instead of the attitude angles
θ , ψ), we formulate the problem as follows:

�̇v = a�e + �g,
�v(0) = �v0, �v(tf )//�w,
‖�w‖ = 1,
min tf ,

where �w is a given vector that refers to the desired target
velocity direction, and �g is the gravitational acceleration
vector. The solution of this problem is straightforward and
gives : the optimal solution of (P0) is given by

�e∗ = 1
a

(
k �w − �v0

tf
− �g
)
, tf =

−a2 +
√
a22 − 4a1a3
2a1

, �pv

= −p0

a + 〈�e∗, �g〉�e
∗.

with

k = 〈�v0, �w〉 + 〈�g, �w〉tf ,
a1 = a2 − ‖〈�g, �w〉�w − �g‖2,
a2 = 2

(〈�v0, �w〉〈�g, �w〉 − 〈�v0, �g〉
)
,

and

a3 = −‖〈�v0, �w〉�w − �v0‖2.
We refer the readers to [92] for the detailed calculation.
The Euler angles θ∗ ∈ (−π ,π) and ψ∗ ∈ (−π/2,π/2)

are retrieved from the components of the vector �e∗ since
�e∗ = (sin θ∗ cosψ∗,− sinψ∗, cos θ∗ sinψ∗)�.
We can check that these optimal angles θ = θ∗, ψ = ψ∗

and φ = φ∗ (whatever the value of φ∗) satisfy the Eqs. (23),
so that the solution of (P0) is contained in the singular sur-
face S. The optimal solution of (P0) actually corresponds
to a singular solution of (PS) with the terminal conditions
given by

vx(0) = vx0 , vy(0) = vy0 , vz(0) = vz0 ,
θ(0)=θ∗, ψ(0)=ψ∗, ,φ(0)=φ∗, ωx(0)=0, ωy(0)=0,

(24)

vz(tf ) sinψf + vy(tf ) cos θf cosψf = 0, vz(tf ) sin θf

− vx(tf ) cos θf = 0,
(25)

θ(tf ) = θ∗, ψ(tf ) = ψ∗, ,φ(tf ) = φ∗, ωx(tf )
= 0, ωy(tf ) = 0.

(26)

A natural continuation strategy consists in changing
continuously these terminal conditions (24)-(26) to come
back to the terminal conditions (20) of (PS).
Unfortunately the chattering phenomenon may prevent

the convergence of the shooting method. When the ter-
minal conditions are in the neighborhood of the singular
surface S, the optimal extremals are likely to contain a sin-
gular arc and thus chattering arcs causing the failure of
the shooting method. In order to overcome the numeri-
cal issues we define a regularized problemwith a modified
cost functional.
The regularized problem (PR) consists in minimizing

the cost functional

CK = tf + K
∫ tf

0
(u21 + u22) dt, (27)

for the bi-input control-affine system (17), under the con-
trol constraints −1 ≤ ui ≤ 1, i = 1, 2, and with the
terminal conditions (20). The constant K > 0 is arbi-
trary. We have replaced the constraint u21 + u22 ≤ 1 (i.e.,
u takes its values in the unit Euclidean disk) with the
constraint that u takes its values in the unit Euclidean
square. Note that we use the Euclidean square (and not the
disk) because we observed that our numerical simulations
worked better in this case. This regularized optimal con-
trol problem with the cost (27) has continuous extremal
controls and it is therefore well suited to a continuation
procedure.
The Hamiltonian of problem (PR) is

HK =〈p, f (x)〉 + u1〈p, g1(x)〉 + u2〈p, g2(x)〉
+ p0

(
1 + Ku21 + Ku22

)
,

(28)

and according to the PMP, the optimal controls are

u1(t) = sat
(

−1,− b̄pωy(t)
2Kp0

, 1
)
,

u2(t) = sat
(

−1,
b̄pωx(t)
2Kp0

, 1
)
,

(29)

where the saturation operator sat is defined by

sat(−1, f (t), 1) =
⎧⎨
⎩

−1 if f (t) ≤ −1,
1 if f (t) ≥ 1,
f (t) if − 1 ≤ f (t) ≤ 1.

An important advantage of considering problem (PR) is
that when we embed the solutions of (P0) into the (PR),
they are not singular, whereas the solution of (P0) is a sin-
gular trajectory of the full problem (PS) and thus passing
directly from (P0) to (PS) causes essential difficulties due
to chattering. More precisely, an extremal of (P0) can be
embedded into (PR), by setting
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u(t) = (0, 0), θ(t) = θ∗, ψ(t) = ψ∗, φ(t)
= φ∗, ωx(t) = 0, ωy(t) = 0,

pθ (t) = 0, pψ(t) = 0, pφ(t) = 0, pωx(t)
= 0, pωy(t) = 0,

where θ∗ and ψ∗ are given by solving problem P0, with
the natural terminal conditions given by (24) and (25)-
(26). This solution is not a singular extremal for (PR). The
extremal equations for (PR), are the same than for (PS), as
well as the transversality conditions.

Numerical continuation procedure The objective is to
find the optimal solution of (PS), starting from the explicit
solution of P0. We proceed as follows:

• First, we embed the solution of (P0) into (PR). For
convenience, we still denote (P0) the problem (P0)
formulated in higher dimension.

• Then, we pass from (P0) to (PS) by means of a
numerical continuation procedure, involving three
continuation parameters. The first two parameters λ1
and λ2 are used to pass continuously from the
optimal solution of (P0) to the optimal solution of the
regularized problem (PR) with prescribed terminal
attitude conditions, for some fixed K > 0. The third
parameter λ3 is then used to pass to the optimal
solution of (PS) (see Fig. 13).

In a first step, we use the continuation parameter λ1 to
act on the initial conditions, according to

θ(0) = θ∗(1 − λ1) + θ0λ1, ψ(0) = ψ∗(1 − λ1)

+ ψ0λ1, φ(0) = φ∗(1 − λ1) + φ0λ1,

ωx(0) = ω∗
x(1−λ1)+ωx0λ1, ωy(0) = ω∗

y (1−λ1)+ωy0λ1,
where ω∗

x = ω∗
y = 0, φ∗ = 0, and θ∗, ψ∗ are given by the

explicit solution of the problem (P0).
Using the transversality condition (21) and the extremal

equations, the shooting function Sλ1 for the λ1-
continuation is of dimension 8 and defined by

Sλ1 = (pωx(tf ), pωy(tf ), pθ (tf ), pψ(tf ), pφ(tf ), HK (tf ),
vz(tf ) sinψf + vy(tf ) cos θf cosψf , vz(tf ) sin θf

−vx(tf ) cos θf
)
,

whereHK (tf ) with p0 = −1 is calculated from (28) and u1
and u2 are given by (29). Recall that we have proved that
a singular extremal of problem (PS) must be normal, and
since we are starting to solve the problem from a singular
extremal, we can assume that p0 = −1.

Fig. 13 Continuation procedure for (PS)

Note again that there is no concern using Sλ1 as shooting
function for (PR). This would not be the case for (PS) : if
Sλ1 = 0, then together with ωx(tf ) = 0 and ωy(tf ) = 0,
the final point (x(tf ), p(tf )) of the extremal would lie on
the singular surface S defined by (23) and this would cause
the failure of the shooting method. On the opposite, for
problem (PR), even when x(tf ) ∈ S, the shooting problem
is smooth and it can still be solved.
The solution of (P0) is a solution of (PR) for λ1 = 0, cor-

responding to the terminal conditions (24)-(25) (the other
states at tf being free). By continuation, we vary λ1 from
0 to 1, yielding the solution of (PR), for λ1 = 1. The final
state of the corresponding extremal gives some uncon-
strained Euler angles denoted by θe = θ(tf ), ψe = ψ(tf ),
φe = φ(tf ), ωxe = ωx(tf ) and ωye = ωy(tf ).
In a second step, we use the continuation parameter λ2

to act on the final conditions, in order to make them pass
from the values θe,ψe, φe,ωxe andωye, to the desired target
values θf , ψf , φf , ωxf and ωyf . The shooting function Sλ2
for the λ2-continuation is still of dimension 8 and defined
by

Sλ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ωx(tf ) − (1 − λ2)ωxe − λ2ωxf
ωy(tf ) − (1 − λ2)ωye − λ2ωyf

θ(tf ) − (1 − λ2)θe − λ2θf
ψ(tf ) − (1 − λ2)ψe − λ2ψf
φ(tf ) − (1 − λ2)φe − λ2φf

vz(tf ) sinψf + vy(tf ) cos θf cosψf
vz(tf ) sin θf − vx(tf ) cos θf

HK (tf )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Solving this problem by varying λ2 from 0 to 1, we obtain
the solution of (PR), with the terminal condition (20).
Finally, in order to compute the solution of (PS), we use

the continuation parameter λ3 to pass from (PR) to (PS).
We introduce the parameter λ3 into the cost functional
(27) and the Hamiltonian HK as follows:

CK = tf + K
∫ tf

0
(u21 + u22)(1 − λ3) dt,

H(tf , λ3) =〈p, f 〉 + 〈p, g1〉u1 + 〈p, g2〉u2 + p0

+ p0K(u21 + u22)(1 − λ3).
According to the PMP, the extremal controls of this prob-
lem are given by ui = sat(−1,uie, 1), i = 1, 2, where

u1e = b̄pωy

−2p0K(1 − λ3) + b̄λ3
√
p2ωx + p2ωy

,

u2e = −b̄pωx

−2p0K(1 − λ3) + b̄λ3
√
p2ωx + p2ωy

.

The shooting function Sλ3 is defined similarly to Sλ2 ,
replacing HK (tf ) with HK (tf , λ3). The solution of (PS) is
then obtained by varying λ3 continuously from 0 to 1.
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This last continuation procedure fails in case of chatter-
ing, and thus it cannot be successful for any arbitrary ter-
minal conditions. In particular, if chattering occurs then
the λ3-continuation is expected to fail for some value λ3 =
λ∗
3 < 1. In such a case this value of λ3 corresponds to a

sub-optimal solution of (PS), which is practically valuable
since it satisfies the terminal conditions with a reduced
final time (also not minimal), with a continuous control.
The numerical experiments show that this continuation
procedure is very efficient. In most cases, optimal solu-
tions with prescribed terminal conditions can be obtained
within a few seconds (without parallel calculations).

7.1.4 Direct method
In this section we envision a direct approach for solving
(PS), with a piecewise constant control over a given time
discretization. The solutions obtained with such amethod
are sub-optimal, especially when the control is chattering
(the number of switches being limited by the time step).
Since the initialization of a direct method may also

raise some difficulties, we propose the following strategy.
The idea is to start from the problem (PS) with relaxed
terminal requirements, in order to get a first solution,
and then to reintroduce step by step the final condi-
tions (20) of (PS). We implement this direct approach
with the software BOCOP and its batch optimization
option (see [13]).

• Step 1: we solve (PS) with the initial condition
x(0) = x0 and the final conditions

ωy(tf ) = 0, θ(tf ) = θf , vz(tf ) sin θf −vx(tf ) cos θf = 0.

These final conditions are those of the planar version
of (PS) (see [93] for details). This problem is easily
solved by a direct method without any initialization
care (a constant initial guess for the discretized
variables suffices to ensure convergence).

• Then, in Steps 2, 3, 4 and 5, we add successively (and
step by step) the final conditions

vz(tf ) sinψf + vy(tf ) cos θf cosψf = 0,

ψ(tf ) = ψf , φ(tf ) = φf , ωx(tf ) = ωxf ,

and for each new step we use the solution of the
previous one as an initial guess.

At the end of this process, we have obtained the solution
of (PS).

7.1.5 Comparison of the indirect and direct approaches
So far, in order to compute numerically the solutions of
(PS), we have implemented two approaches. The indirect
approach, combining shooting and numerical continua-
tion, is time-efficient when the solution does not contain
any singular arcs.

Depending on the terminal conditions, the optimal solu-
tion of (PS) may involve a singular arc of order two, and
the connection with regular arcs generates chattering. The
occurrence of chattering causes the failure of the indirect
approach. For such cases, we have proposed two alterna-
tives. The first alternative is based on an indirect approach
involving three continuations. The last continuation start-
ing from a regularized problemwith smooth controls aims
at coming back to the original problem that may be chat-
tering. When chattering appears the continuation fails,
but the last successful step provides a valuable smooth
solution meeting the terminal conditions.
The second alternative is based on a direct approach,

and it yields as well a sub-optimal solution having a finite
number of switches. The number of switches is limited by
the discretization step. In any case, the direct strategy is
much more time consuming than the indirect approach
and the resulting control may exhibit many numerical
oscillations as can be observed on Fig. 14. This kind of
solutions is practically undesirable.
Note that with both approaches, no a priori knowledge

of the solution structure is required (in particular, the
number of switches is unknown).
Note also that since our aim is to show how to apply

the geometric optimal control techniques and the numer-
ical continuation methods, we do not make more detailed
comparisons. We refer the interested readers to section
6.2 of [92] for a more detailed comparison. In fact, in
aerospace applications, indirect methods are preferred
because they provide, in general, more precise optimal
trajectories. This is especially important in deep-space
trajectory planning missions.
As a conclusion about this example (PS), we can empha-

size that the theoretical analysis has revealed the existence
of singular solutions with possible chattering. This led us
to introduce a regularized problem in order to overcome
this essential difficulty. On the other hand a continuation
procedure is devised considering the dynamics slow-fast
rates. This procedure is initiated by the problem of order
zero reduced to the trajectory dynamics.
In the next section, we extend this approach to a

more complicated problem (optimal pull-up maneuvers
of airborne launch vehicles), in order to further illus-
trate the potential of continuation methods in aerospace
applications.

7.2 Extension to optimal pull-up maneuver problem (PA)
Since the first successful flight of Pegasus vehicle in
April 1990, the airborne launch vehicles have always
been a potentially interesting technique for small
and medium-sized space transportation systems. The
mobility and deployment of the airborne launch vehi-
cles provide increased performance and reduced velocity
requirements due to non-zero initial velocity and altitude.
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Fig. 14 Control u(t) for (PS) obtained by BOCOP

Airborne launch vehicles consist of a carrier aircraft (see
left subfigure of Fig. 15) and a rocket-powered launch
vehicle (see right subfigure of Fig. 15). The launch vehi-
cle is released almost horizontally from the carrier aircraft
and its engine is ignited a few seconds later once the
carrier aircraft has moved away. The flight begins with
a pull-up maneuver [75, 76] targeting the optimal flight
path angle for the subsequent ascent at zero angle of
attack. The kinematics conditions for the Pegasus vehi-
cle are recalled here after [8, 36, 67, 73]. The release takes

place horizontally at an altitude of 12.65 km. The first
stage is ignited at an altitude of 12.54 km and a velocity
of 236.8m/s (0.8 Mach). The pull-up maneuver targets
a flight path angle of 13.8◦ at the end of the first stage
flight. The load factor is limited to 2.5 g and the dynamic
pressure is limited to 47.6 kPa.
The pull-up maneuver consists in an attitude maneuver

such that the flight path angle increases up to its targeted
value, while satisfying the state constraints on the load fac-
tor and the dynamic pressure. In this section, we address

Fig. 15 Pegasus airborne launcher before and after release. (Sources : air-and-space.com / spacewar.com)
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the minimum time-energy pull-up maneuver problem for
airborne launch vehicles with a focus on the numerical
solution method.
The model of the control system is more complex than

(16) due to the aerodynamics forces that depend on the
flight conditions (atmospheric density depending on the
altitude, vehicle angle of attack):

ṙx = vx, ṙy = vy, ṙz = vz,
v̇x = a sin θ cosψ + gx + (Dx + Lx)/m,
v̇y = −a sinψ + gy + (Dy + Ly)/m,
v̇z = a cos θ cosψ + gz + (Dz + Lz)/m,
θ̇ = (ωx sinφ + ωy cosφ)/ cosψ ,
ψ̇ = ωx cosφ − ωy sinφ,
φ̇ = (ωx sinφ + ωy cosφ) tanψ ,
ω̇x = −bu2, ω̇y = bu1.

(30)

where (rx, ry, rz) is the position, m is the mass, (Lx, Ly, Lz)
is the lift force, and (Dx, Dy, Dz) is the drag force.
Defining the state variable x =

(rx, ry, rz, vx, vy, vz, θ ,ψ ,φ,ωx,ωy), we write the system
(30) as a bi-input control-affine system

ẋ = f̂ (x) + u1ĝ1(x) + u2ĝ2(x), (31)

where the controls u1 and u2 satisfy the constraint u21 +
u22 ≤ 1, and the smooth vector fields f̂ , ĝ1 and ĝ2 are
defined by

f̂ = vx
∂

∂rx
+ vy

∂

∂ry
+ vz

∂

∂rz

+ (a sin θ cosψ + gx + (Dx + Lx)/m
) ∂

∂vx

+ (−a sinψ + gy + (Dy + Ly
)
/m
) ∂

∂vy

+ (a cos θ cosψ + gz + (Dz + Lz) /m
) ∂

∂vz

+ (ωx sinφ + ωy cosφ
)
/ cosψ

∂

∂θ

+ (ωx cosφ − ωy sinφ
) ∂

∂ψ

+ tanψ
(
ωx sinφ + ωy cosφ

) ∂

∂φ
,

ĝ1 = b
∂

∂ωy
, ĝ2 = −b

∂

∂ωx
.

The initial state is fixed x0 = (rx0, ry0, rz0, vx0 , vy0 , vz0 , θ0,
ψ0,φ0,ωx0 ,ωy0) ∈ R

11, and the target set is defined by
(submanifold of R11)

M1 =
{
(rx, ry, rz, vx, vy, vz, θ ,ψ ,φ,ωx,ωy)

∈ R
11 | vz sinψf + vy cos θf cosψf = 0, vz sin θf

− vx cos θf = 0, θ = θf , ψ = ψf , φ = φf ,ωx

= ωxf , ωy = ωyf

}
.

The optimal pull-up maneuver problem (PA) consists in
steering the bi-input control-affine system (31) from

x(0) = x0 (32)

to a point belonging to the final targetM1, i.e.,

x(tf ) ∈ M1, (33)

while minimizing the cost functional

C
(
tf ,u,Kp

) = tf + K
∫ tf

0
‖u‖2dt, (34)

with controls satisfying the constraint u21 + u22 ≤ 1,
and with the state satisfying constraints on the lateral
load factor and the dynamic pressure due to aerodynamic
forces

n̄ = ρ|v|2SCN
2mg0

≤ n̄max, q̄ = 1
2
ρ|v|2 ≤ q̄max,

where ρ is the air density, S is the reference surface of the
launcher, CN is the lift coefficient approximated by CN =
CN0 + CNαα with given constants CN0 and CNα . α is the
angle of attack given by

α = (vx sin θ cosψ − vy sinψ + vz cos θ cosφ
)
/v,

and |v| is the module of the velocity |v| =
√
v2x + v2y + v2z .

Compared to (PS), a significant additional difficulty
comes from the state constraints.

Hard constraint formulation Recall that a state con-
straint c(x) ≤ 0 is of order m if ĝi.c = ĝif̂ .c = · · · =
ĝif̂ m−2.c = 0 and gif m.c �= 0, i = 1, 2. Here we use the
notation of Lie derivatives, see Section 3.2. A boundary
arc is an arc (not reduced to a point) satisfying the system

c(x(t)) = c(1)(x(t)) = · · · = c(m−1)(x(t)) = 0,

and the control along the boundary arc is a feedback
control obtained by solving

c(m) = f̂ m.c + u1 ĝ1 f̂ (m−1).c + u2 ĝ2 f̂ (m−1).c = 0.

After calculations, we find that the constraint on the load
factor n̄ is of order 2 and the constraint on the dynamic
pressure q̄ is of order 3.
According to the maximum principle with state con-

straints (see, e.g., [53]), there exists a nontrivial triple
of Lagrange multipliers (p, p0, η), with p0 ≤ 0, p ∈
BV (0, tf )11 and η = (η1, η2) ∈ BV (0, tf )2, where BV (0, tf )
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is the set of functions of bounded variation over [ 0, tf ],
such that almost everywhere on [ 0, tf ]

ẋ = ∂H(x, p,u, p0, η)

∂p
,

dp = −∂H(x, p,u, p0, η)

∂x
dt −

2∑
i=1

∂ci(x)
∂x

dηi,

where the Hamiltonian of the problem is

H(x, p,u, p0, η) =〈p, f̂ (x) + u1ĝ1(x) + u2ĝ2(x)〉

+
2∑

i=1
ηici(x) + p0(1 + K‖u‖2),

and we have the maximization condition

u(t) ∈ argmaxwH(x(t), p(t),w, p0, η(t))

for almost every t. In addition, we have dηi ≥ 0 and∫ tf
0 ci(x) dηi = 0 for i = 1, 2.
Along a boundary arc, we must have hi = 〈p, ĝi(x)〉 = 0,

i = 1, 2. Assuming that only the first constraint (which
is of order 2) is active along this boundary arc, and dif-
ferentiating twice the switching functions hi, i = 1, 2,
we have d2hi = 〈p, ad2 f̂ .ĝi(x)〉dt2 − dη1 · (adf̂ .ĝi).c1dt.
Moreover, at an entry point occurring at t = τ , we have
dhi(τ+) = dhi(τ−) − dη1 · (adf̂ .ĝi).c1 = 0, which yields
dη1. A similar result is obtained at an exit point.
The main drawback of this formulation is that the

adjoint vector p is no longer absolutely continuous. A
jump dη may occur at the entry or at the exit point
of a boundary arc, which complexifies significantly the
numerical solution.
An alternative approach to address the dynamic pres-

sure state constraint, used in [37, 41], is to design a
feedback law that reduces the commanded throttle based
on an error signal. According to [41], this approach works
well when the trajectory does not violate too much the
maximal dynamic pressure constraint, but it may cause
instability if the constraint is violated significantly. In any
case the derived solutions are suboptimal.
Another alternative is the penalty function method (also

called soft constraint method ). The soft constraint con-
sists in introducing a penalty function to discard solutions
entering the constrained region [40, 64, 84]. For the prob-
lem (PA), this soft constraint method is well suited in
view of a continuation procedure starting from an uncon-
strained solution. This initial solution generally violates
significantly the state constraint. The continuation proce-
dure aims at reducing progressively the infeasibility.

Soft constraint formulation The problem (PA) is recast
as an unconstrained optimal control problem by adding
a penalty function to the cost functional defined by (34).

The penalized cost is

C(tf ,u,Kp) = tf + K
∫ tf

0
‖u‖2dt + Kp

∫ tf

0
P(x(t))dt,

where the penalty function P(·) for the state constraints is
defined by

P(x) = (max (0, n̄ − n̄max))
2 + (max (0, q̄ − q̄max))

2 .

The constraint violation is managed by tuning the param-
eter Kp. For convenience we still denote this uncon-
strained problem by (PA) and we apply the PMP.

Application of the PMP The Hamiltonian is now given
by

H
(
x, p, p0,u

) =〈p, f̂ (x)〉 + u1〈p, ĝ1(x)〉 + u2〈p, ĝ2(x)〉
+ p0

(
1 + K‖u‖2 + KpP(x)

)
.

The adjoint equation is

ṗ(t) = −∂H
∂x
(
x(t), p(t), p0,u(t)

)
, (35)

where we have set p = (prx , pry , prz , pvx , pvy , pvz , pθ , pψ ,
pφ , pωx , pωy). Let h = (h1, h2) be the switching function
and let

h1(t) = 〈p(t), ĝ1(x(t))〉 = bpωy(t),
h2(t) = 〈p(t), ĝ2(x(t))〉 = −bpωx(t).

The maximization condition of the PMP gives

u =
{

(h1, h2)/(2K) if ‖h‖ ≤ 2K ,
(h1, h2)/‖h‖ if ‖h‖ > 2K . (36)

The transversality condition p(tf ) ⊥ Tx(tf )M1, where
Tx(tf )M1 is the tangent space to M1 at the point x(tf ),
yields the additional conditions

pvy(tf ) sinψf = pvx(tf ) sin θf cosψf + pvz(tf ) cos θf cosψf

and

prx(tf ) = pry(tf ) = prz(tf ) = 0.

The final time tf being free and the system being
autonomous, we have in addition that

H(x(t), p(t), p0,u(t)) = 0,

almost everywhere on [ 0, tf ]. As previously we can assume
p0 = −1.
The optimal control given by (36) is regular unless K =

0 and ‖h(t)‖ = 0, in which case it becomes singular.
As before the term K

∫ tf
0 ‖u(t)‖2dt in the cost functional

(34) is used to avoid chattering [44, 63, 72, 90, 91], and
the exact minimum time solution can be approached by
decreasing step by step the value of K ≥ 0 until the
shooting method possibly fails due to chattering.
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Solution algorithm and comparison with (PS) We aim
at extending the continuation strategy developed for (PS)
in order to address (PA). Comparing (PA) with (PS), we
see that in (PA):

(a) the position of the launcher is added to the state
vector;

(b) the gravity acceleration �g depends on the position
and the aerodynamic forces (lift force �L and the drag
force �D) are considered;

(c) the cost functional is penalized by the state
constraints violation;

Regarding the point (a), we need embedding the solu-
tion of (P0) into a larger dimension problem with the
adjoint variable of the position �pr = (prx, pry, prz)� being
zero. More precisely, consider the following problem,
denoted by (PH

0 ), in which the position and the velocity
are considered

�̇r = �v, �̇v = a�e + �g0,
�r(0) = �r0, �v(0) = �v0, �v(tf )//�w,
‖�w‖ = 1,
min tf .

The solution of (PH
0 ) is retrieved from the solution of

(P0) completed by the new state components,

tf =
−a2 +

√
a22 − 4a1a3
2a1

, �pr = �0, �pv = −p0

a + 〈�e∗, �g〉�e
∗ ,

and the optimal control is

�e = �e∗ = 1
a

(
k �w − �v0

tf
− �g0

)
,

with

k = 〈�v0, �w〉 + 〈�g0, �w〉tf ,
a1 = a2 − ‖〈�g0, �w〉�w − �g0‖2,
a2 = 2

(〈�v0, �w〉〈�g0, �w〉 − 〈�v0, �g0〉
)
,

and

a3 = −‖〈�v0, �w〉�w − �v0‖2.
We use this solution as the initialization of the continu-

ation procedure for solving (PA).
The point (b) can be addressed with a new continu-

ation parameter λ4 introducing simultaneously the vari-
able gravity acceleration, the aerodynamic forces and the
atmospheric density ρ (exponential model) as follows:

v̇x = a sin θ cosψ + g0x(1 − λ4) + λ4gx + λ4
Dx + Lx

m
,

v̇y = −a sinψ + g0y(1 − λ4) + λ4gy + λ4
Dy + Ly

m
,

v̇z = a cos θ cosψ + g0z(1 − λ4) + λ4gz + λ4
Dz + Lz

m
,

and

ρ(t)=ρ0

(
(1 − λ4) exp

(
−
(√

(RE + rx(0))2 + ry(0)2 + rz(0)2 − RE

)
/hs
)

+λ4 exp
(

−
(√

(RE + rx)2 + r2y + r2z − RE

)
/hs
))

,

where RE = 6378137 m is the radius of the Earth, hs =
7143m, ρ0 = 1.225 kg/m3, and gx, gy, gz are given by

(
gx, gy, gz

)� = −
g0
√

(RE + rx(0))2 + ry(0)2 + rz(0)2√
(RE + rx)2 + r2y + r2z

× (cos l2, sin l1 sin l2, cos l1 sin l2)� ,

with

g0 =
√
g2x0 + g2y0 + gz0,

and

tan l1 = ry/rx, tan l2 =
√
r2y + r2z/(rx + RE).

The parameter λ4 acts only on the dynamics. Applying
the PMP, λ4 appears explicitly in the adjoint equations, but
not in the shooting function.
Finally, regarding the point (c), the penalty parameter

Kp in the cost functional (27) has to be large enough
in order to produce a feasible solution. Unfortunately,
too large values of Kp may generate ill conditioning and
raise numerical difficulties. In order to obtain an adequate
value for Kp, a simple strategy [43, 80] consists in starting
with a quite small value of Kp = Kp0 and solving a series
of problems with increasing Kp. The process is stopped as
soon as ‖c(x(t))‖ < εc, for every t ∈[ 0, tf ], for some given
tolerance εc > 0.
For convenience, we define the exo-atmospheric pull-

up maneuver problem (Pexo
A ) as (PA) without state con-

straints and without aerodynamic forces and the uncon-
strained pull-upmaneuver problem (Punc

A ) as (PA) without
state constraints.
We proceed as follows:

• First, we embed the solution of (P0), into the larger
dimension problem (PA). This problem is denoted
(PH

0 ).
• Then, we pass from (PH

0 ), to (PA) by using a
numerical continuation procedure, involving four
continuation parameters: two parameters λ1 and λ2
introduce the terminal conditions (32)-(33) into
(Pexo

A ); λ4 introduces the variable gravity acceleration
and the aerodynamic forces in (Punc

A ); λ5 introduces
the soft constraints in (PA).

The overall continuation procedure is depicted on
Fig. 16. The final step of the procedure is to increase
λ3 (or equivalently decrease K ) in order to minimize the
maneuver duration.
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Fig. 16 Continuation procedure for solving (PA)

More precisely, we have to solve the following problem
with continuation parameters λi, i = 1, 2, 4, 5, 3

min tf + (1 − λ3)

∫ tf

0
‖u‖2dt + λ5Kp

∫ tf

0
P(x(t))dt,

subject to the dynamics

ṙx = vx, ṙy = vy, ṙz = vz,

v̇x = a sin θ cosψ + g0x(1 − λ4) + λ4gx + λ4
Dx + Lx

m
,

v̇y = −a sinψ + g0y(1 − λ4) + λ4gy + λ4
Dy + Ly

m
,

v̇z = a cos θ cosψ + g0z(1 − λ4) + λ4gz + λ4
Dz + Lz

m
,

θ̇ = (ωx sinφ + ωy cosφ
)
/ cosψ ,

ψ̇ = ωx cosφ − ωy sinφ,
φ̇ = (ωx sinφ + ωy cosφ

)
tanψ ,

ω̇x = −b̄u2,
ω̇y = b̄u1,

and with initial conditions

�r(0) = (rx0, ry0, rz0)� ,

�v(0) = (vx0, vy0, vz0)� ,
θ(0) = θ∗(1 − λ1) + θ0λ1,
ψ(0) = ψ∗(1 − λ1) + ψ0λ1,
φ(0) = φ0λ1,
ωx(0) = ωx0λ1,
ωy(0) = ωy0λ1,

and final conditions

�r(tf ) free,
�v(tf ) ⊥ ẑb,
θ(tf ) = θe(1 − λ2) + θf λ2,
ψ(tf ) = ψe(1 − λ2) + ψf λ2,
φ(tf ) = φe(1 − λ2) + φf λ2,
ωx(tf ) = ωxe(1 − λ2) + ωxf λ2,
ωy(tf ) = ωye(1 − λ2) + ωxf λ2.

The attitude angles θe, ψe, φe, ωxe, and ωye are those
obtained at the end of the first continuation on λ1. θ∗, ψ∗
are the explicit solutions of (PH

0 ).
These successive continuations are implemented using

the PC continuation combined with the multiple shoot-
ing method. Some additional enhancements regarding the
inertial frame choice and the Euler angle singularities help
improving the overall robustness of the solution process.

Multiple shooting The unknowns of this shooting prob-
lem are p(0) ∈ R

11, tf ∈ R, and zi = (xi, pi) ∈ R
22,

i = 1, · · · ,N − 1, where zi are the node points of the
multiple shooting method (see Section 4.1). We set Z =
(p(0), tf , zi), and let E = (θ ,ψ ,φ), ω = (ωx,ωy), pr =
(prx, pry, prz), pE = (pθ , pψ , pφ), and pω = (pωx, pωy).
Then, the shooting function with the continuation param-
eter λ1 is given by

Gλ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vz(tf ) sinψf + vy(tf ) cos θf cosψf

vz(tf ) sin θf − vx(tf ) cos θf

pvy(tf ) sinψf − (pvx(tf ) sin θf cosψf + pvz(tf ) cos θf cosψf )

pr(tf ),
pω(tf )
pE(tf )
H(tf ){

zi(t−i ) = zi(ti)+, i = 1, · · · ,N − 1
}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where the Hamiltonian is given by

H =〈p, f (x)〉 + u1〈p, g1(x)〉 + u2〈p, g2(x)〉
+ p0(1 + (1 − λ3)K‖u‖2 + λ5KpP(x)).

The shooting function with the continuation parameter
λ2 is

Gλ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vz(tf ) sinψf + vy(tf ) cos θf cosψf ,
vz(tf ) sin θf − vx(tf ) cos θf

pvy(tf ) sinψf − (pvx(tf ) sin θf cosψf + pvz(tf ) cos θf cosψf )

E(tf ) − (1 − λ2)Ee − λ2Ef
ω(tf ) − (1 − λ2)ωe − λ2ωf

pr(tf ), H(tf ){
zi(t−i ) = zi(ti)+, i = 1, · · · ,N − 1

}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and the shooting functions Gλ4 and Gλ5 are identical
to Gλ2 .

PC continuation The predictor-corrector continuation
requires the calculation of the Jacobian matrix JG (see
Section 5.2) which is computationally expenssive. In order
to speed up the process, an approximation is used based
on the assumption of no conjugate point. According to
[27], the first turning point of λ(s̄) (where dλ

ds (s̄) = 0 and
d2λ
ds2 (s̄) �= 0) corresponds to a conjugate point (the first
point where extremals lose local optimality). If we assume
the absence of the conjugate point, there is no turning
point for λ(s), and λ increases monotonically along the
zero path. Knowing three zeros (Zi−2, λi−2), (Zi−1, λi−1)
and (Zi, λi), and let s1 = ‖(Zi−1, λi−1) − (Zi−2, λi−2)‖,
s2 = ‖(Zi, λi)−(Zi−2, λi−2)‖, s3 = ‖(Zi, λi)−(Zi−1, λi−1)‖,
we can approximate the tangent vector t(JG) by

t(JG) = (Zi, λi) − (Zi−1, λi−1)

s2 − s1
|s2 − s1|

|s3| . (37)

When the step length hs is small enough, this approxima-
tion yields a predicted point (15) very close to the true
zero.

Change of frame Changing the inertial reference frame
can improve the problem conditioning and enhance the
numerical solution process. The new frame S′

R is defined
from the initial frame SR by two successive rotations of
angles (β1,β2). The problem (PA) becomes numerically
easier to solve when the new reference frame S′

R is adapted
to the terminal conditions. However we do not know a pri-
ori which reference frame is the best suited.We propose to
choose a reference frame associated to (β1,β2) such that
ψ ′
f = −ψ ′

0 and |ψ ′
f | + |ψ ′

0| being minimal (the subscribe
′ here means the new variable in S′

R). This choice centers
the terminal values on the yaw angle on zero. Thus we can
hope that the solution remains far from the Euler angle
singularities occurring when ψ → π/2 + kπ .
This frame rotation defines a nonlinear state trans-

formation, which acts as a preconditionner. We observe

from numerical experiments that it actually enhances the
robustness of the algorithm. The reader is referred to [93]
for more details of the change of frame.

Singularities of Euler angles The above frame change
is not sufficient to avoid Euler angle singularities in
all cases. Smoothing the vector fields at these singu-
lar configurations is another enhancement improving the
overall robustness. The state and costate equations are
smoothened as follows. Assuming first that θ̇ is bounded,
we have ωx sinφ + ωy cosφ → 0 when ψ → π/2 + kπ .
Since

θ̇ φ̇ = lim
ψ→π/2+kπ

(
ωx sinφ + ωy cosφ

)2 sinψ → 0

and θ̇/φ̇ → 1 as ψ → π/2 + kπ , we can smoothen the
state equations by θ̇ = φ̇ = 0 when ψ → π/2 + kπ .
Assuming then that − pθ+pφ sinψ

cosψ
→ A < ∞ as ψ →

π/2 + kπ , and taking the first-order derivatives of the
numerator and denominator

A = lim
ψ→π/2+kπ

−pθ + pφ sinψ

cosψ

= lim
ψ→π/2+kπ

ṗθ + ṗφ sinψ + pφ cosψψ̇

sinψψ̇
= −A

Algorithm 3: Prediction-Corrector continuation
for (PA)
Result: The solution of the problem (PA)
· Change of frame: compute (β1,β2) and the new
initial condition x(0) = x′

0;
· Solve (PH0 ), to get a solution Z0;
· Initialize the multiple shooting method with Z0 and
λi = 0, i = 1, · · · 5;
for i = 1, 2, 4, 5, (3) do

while λi ≤ 1 and �λimin ≤ �λi ≤ �λimax do
(Predictor) Predict a point (Z̃, λ̃i) according to
(15) and (37);
(Corrector) Find the solution (Z̄, λ̄i) of
Gλi(Z̃, λ̃i) = 0;
if successful then

(Z, λi) = (Z̄, λ̄i);
else

Reduce the step-length hs;
end

end
if successful then

The λi-continuation is successful;
else

The λi-continuation has failed;
end

end
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we obtain A = 0. We can smoothen the costate equations
by ṗθ = 0, ṗφ = 0, ṗψ = a sin θpvx + a cos θpvz, ṗωx =
−pψ cosφ, ṗωy = pψ sinφ. Summing up, at points ψ →
π/2 + kπ , the attitude equations in system (31) and (35)
become

θ̇ = 0,
ψ̇ = ωx cosφ − ωy sinφ,
φ̇ = 0,
ω̇x = −b̄u2,
ω̇y = b̄u1,
ṗθ = 0,
ṗψ = a sin θpvx + a cos θpvz , ṗφ = 0,
ṗωx = −pψ cosφ, ṗωy = pψ sinφ.

(38)

These Eqs. (38) are used close to the singularities.

Algorithm We describe the whole numerical strategy of
solving (PA) in the following algorithm.

7.3 Numerical results of solving (PA)
The Algorithm 3 is first applied to a pull-up maneuver
of an airborne launch vehicle just after its release from
the carrier. We present some statistical results showing
robustness of our algorithm. A second example considers
the three-dimensional reorientation maneuver of a launch
vehicle upper stage after a stage separation.

7.3.1 Pull-Upmaneuvers of an airborne launch vehicle (AVL)
We consider a pull-up maneuver of an airborne launch
vehicle close to the Pegasus configuration : a = 15.8,
b = 0.2, S = 14m2, Cx0 = 0.06, Cxα = 0, Cz0 = 0, and
Czα = 4.7. Let n̄max = 2.2g and q̄max = 47 kPa. The ini-
tial conditions (32) correspond to the engine ignition just
after the release.

rx0=11.9 km, ry0=rz0=0, v0=235m/s, θv0=−10◦,

ψv0=0◦, θ0=−10◦, ψ0=φ0=0, ωx0=ωy0=−1◦/s,

The final conditions (33) correspond to the beginning of
the atmospheric ascent flight at zero angle of attack.

θf = 42◦, ψf = 10◦, φf = 0, ωxf = ωyf = 0.

Such pull-up maneuvers are generally planar (ψf = 0◦).
Here we set ψf = 10◦ in order to show that the algo-
rithm can also deal efficiently with non-planar pull-up
maneuvers.
The multiple shooting method is applied with three

node points. The components of the state variable x and
the control u are plotted on Figs. 17 and 18, the compo-
nents of the adjoint variable p are plotted on Fig. 19, the
time histories of the load factor n̄ and of the dynamic pres-
sure q̄ are plotted on Fig. 20. The position components
are given in the geographic local frame with the vertical
along the first axis (denoted x, not to be confused with the
state vector). The control vector first component u1 lies
mainly in the trajectory plane and it acts mainly on the
pitch angle.

Fig. 17 Time history of state variable x(t) during the pull-up maneuver
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Fig. 18 Time history of control variable u(t) during the pull-up
maneuver

We observe on Fig. 20 a boundary arc on the load
factor constraint near the maximal level n̄max = 2.2g.
This corresponds on Fig. 19 to the switching function
h(t) = b(pωy ,−pωx) being close to zero. Comparing
Figs. 18 and 19, we see that the control follows the

form of the switching function. On the other hand,
the state constraint of the dynamic pressure is never
active.
We observe also on Fig. 19 a steeper variation of pθ (t)

at t = 5.86 s. The penalty function P(x) starts being pos-
itive at this date and adds terms in the adjoint differential
equation.
Running this example requires 24.6 s to compute the

optimal solution, with CPU: Intel(R) Core(TM) i5-2500
CPU 3.30GHz; Memory: 3.8 Gio; Compiler: gcc version
4.8.4 (Ubuntu 14.04 LTS). The number of nodes for the
multiple shooting has been set to 3 from experiments.
Passing to four node increases the computing time to
31.2 s without obvious robustness benefit.
We next present some statistical results obtained with

the same computer settings.
Statistical results (PA) is solved for various terminal
conditions. The initial and final conditions are swept in
the range given in Table 2. The last cell of the table indi-
cates that the initial angle of attack is bounded to 10
degrees in order to exclude unrealistic cases.
For each variable, we choose a discretization step and

we solve all possible combinations resulting from this dis-
cretization (factorial experiment). The total number of
cases is 1701. All cases are run with the penalty parameter

Fig. 19 Time history of the adjoint variable p(t) during the pull-up maneuver
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Fig. 20 Time history of the constraints c(x(t)) during the pull-up maneuver

varying from Kp0 = 0.1 to Kp1 = 100 during the third
continuation. For each continuation stage the number of
simulations is limited to 200.
The 1701 cases are run for different settings of the num-

ber of nodes (N = 0 or N = 2) and of the regularization
parameter (K = 800 or K = 1000).
The statistical results are reported in Tables 3, 4 and 5.
Tables 3-4 show the results with a multiple shooting

using 2 nodes, with different values of the regularization
parameter K. The algorithm appears fairly robust with
respect to the terminal conditions. The choice of the reg-
ularization parameter K affects the resolution results: (i)
the rate of success increases (resp. decreases) in the non-
planar case (resp. planar case) whenK increases fromK =
800 to K = 1000; (ii) in term of the execution time, we see
that in both cases, it is faster to get a result in planar case
than in non-planar case, and most time is devoted to deal
with the state constraints during the last continuation.
This suggests that for each specific problem (defined by

the launcher configuration and the terminal conditions) a
systematical experiment should be processed to find out
the best K value. For example, we have tested the planar
cases with different values of K. The success rate and the
execution time are plotted with respect to K in Fig. 21.
We see that the value of K should neither be too large

nor too small. From Tables 3, 4 and 5, we observe also
that the λ2-continuation causes most failures in the non-
planar case. The success rate could be possibly improved
by adapting the K value.
Tables 3 and5 compare the multiple and the single

shooting method (N = 0). The multiple shooting method

Table 2 Parameter ranges

v0 θv0 ψv0 θ0 ψ0

fixed 0.8Mach [−10, 0]◦ fixed 0◦ [−10, 10]◦ fixed 0◦

θf ψf ωx0 ωy0 θ0 − θv0

[ 20, 80]◦ [−10, 10]◦ [−2, 2]◦ /s [−2, 2]◦ /s [ 0, 10]◦

(N = 2) clearly improves the robustness of the algorithm,
without significant increase of the execution time.
Figure 22 plots the success rate and the execution time

depending of the number of nodes. The test case is the
planar maneuver with the regularization parameter K set
to 5.5 × 103. The rate of success does not increase mono-
tonically with respect to the number of node points, and
the execution time does not change significantly forN less
than 6. When N ≥ 6, the success rate decreases quickly
and equals to zero when N = 7. When the number of
unknowns for the shootingmethod becomes too large, the
domain of convergence of a Newton-type method reduces
which finally leads to lower rate of success.

7.3.2 Reorientationmaneuver of a launch vehicle
Along multi-burn ascent trajectories, the control
(Euler angles) exhibit jumps at the stage separations (see
for example [59, Figure 3]). In this case, a reorientation
maneuver is necessary to follow the optimal thrust direc-
tion. For this reason, we apply the above algorithm as
well to the maneuver problem of the upper stages of the
launch vehicles.
Opposite to the airborne launch vehicle’s pull-up

maneuvers, these reorientation maneuvers are in general
three-dimensional and of lower magnitude. They occur
at high altitudes (typically higher than 50 km since a suf-
ficiently low dynamic pressure is required to ensure the
separation safety) and high velocity (since the first stage
has already delivered a large velocity increment).
The maneuver occurs in vacuum so that no state con-

straints apply. Finding the minimum time maneuver cor-
responds to solving the problem (PS).
In the example, we set the system parameters in (31)

to a = 20, b = 0.2, which approximate an Ariane-like
launcher. The initial conditions (32) are

rx0=100 km, ry0=rz0 = 0, v0=5000m/s, θv0=30◦,

ψv0 = 0◦, θ0 = 40◦, ψ0 = φ0 = 0, ωx0 = ωy0 = 0,
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Table 3 Statistical results (N = 2 and K = 8 × 102)

Planar Non-planar

Number of cases 567 1134

Rate of success (%) 89.07 80.04

Number of failure cases

- In λ1-continuation 0 14

- In λ2-continuation 21 172

- In λ4-continuation 41 26

- In λ5+Kp-continuation 0 10

Average execution time (s)

- Total 26.94 44.05

- In λ1-continuation 0.49 0.48

- In λ2-continuation 2.07 2.37

- In λ4-continuation 2.54 2.99

- In λ5+Kp-continuation 23.16 37.35

and the final conditions (33) are

θf = 60◦, ψf = 10◦, φf = 0, ωxf = ωyf = 0.

The multiple shooting method is applied with four node
points. On Figs. 23 and 24, we report the components
of state and control variables. We observe that, when
t ∈[ 32, 145] s, the control is quasi null, and the attitude
angles take the solution values of the zero order problem
(PH

0 ): θ = 151.5◦ ≈ θ∗ = 151.57◦, ψ = 8.6◦ ≈ ψ∗ =
8.85◦. The regularization term K

∫ tf
0 ‖u‖2dt in the cost

Table 4 Statistical results (N = 2 and K = 1 × 103)

Planar Non-planar

Number of cases 567 1134

Rate of success (%) 85.89 86.94

Number of failure cases

- In λ1-continuation 0 4

- In λ2-continuation 36 120

- In λ4-continuation 44 16

- In λ5+Kp-continuation 0 8

Average execution time (s)

- Total 26.55 47.96

- In λ1-continuation 0.49 0.51

- In λ2-continuation 2.12 2.40

- In λ4-continuation 2.71 2.74

- In λ5+Kp-continuation 22.60 42.28

Table 5 Statistical results (N = 0 and K = 8 × 102)

Planar Non-planar

Number of cases 567 1134

Rate of success (%) 83.95 74.96

Number of failure cases

- In λ1-continuation 4 10

- In λ2-continuation 29 210

- In λ4-continuation 21 24

- In λ5+Kp-continuation 37 40

Average execution time (s)

- Total 28.93 33.36

- In λ1-continuation 0.47 0.57

- In λ2-continuation 1.17 1.71

- In λ4-continuation 10.80 10.51

- In λ5+Kp-continuation 18.17 21.56

functional yields a continuous control plotted on Fig. 24
and avoids chattering For this application case the regular-
ization parameter moves from (1−λ3)K = 8×104 (λ = 0)
until (1 − λ3)K = 240 (λ3 = 0.997) and the computing
time is about 110 s.
The maneuver duration tf is about 175 s due to the

large direction change required on the velocity. Dur-
ing a real flight the velocity direction change is much
smaller and the maneuver takes at most a few seconds.
Our purpose when presenting this “unrealistic” case is
rather to show that the proposed algorithm is robust
in a large range of system configurations and terminal
conditions.

8 Conclusion
The aim of this article was to show how to apply
techniques of geometric optimal control and numerical
continuation to aerospace problems. Some classical tech-
niques of optimal control have been recalled, including
Pontryagin Maximum Principle, first and second-order
optimality conditions, and conjugate time theory. Tech-
niques of geometric optimal control have then been
recalled, such as higher-order optimality conditions and
singular controls.
A quite difficult problem has illustrated in detail how to

design an efficient solution method with the help of geo-
metric optimal control tools and continuation methods.
Some applications in space trajectory optimization have
also been recalled.
Though geometric optimal control and numerical con-

tinuation provide a nice way to design efficient approaches
for many aerospace applications, the answer to “how to
select a reasonably simple problem for the continuation
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Fig. 21 Rate of success with respect to K for solving (PA)

Fig. 22 Rate of success with respect to N by solving (PA)

Fig. 23 Time history of state variable x(t) for a reorientation maneuver
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Fig. 24 Time history of control variable u(t) for a reorientation
maneuver

procedure” for general optimal control problems remains
open. A deep understanding of the system dynamics is
necessary to devise a simple problem that is “physically”
sufficiently close to the original problem, while being
numerically suited to initiate a continuation procedure.
In practice, many problems remain difficult due to the

complexity of real-life models. In general, a compromise
should be found between the complexity of the model
under consideration and the choice of an adapted numer-
ical method.
As illustrated by the example of airborne launch vehi-

cles, many state and/or control constraints should also
be considered in a real-life problem, and such constraints
makes the problem much more difficult. For the airborne
launch problem a penalization method combined with
the previous geometric analysis proves satisfying. But this
approach has to be customized to the specific problem
under consideration. A challenging task is then to com-
bine an adapted numerical approach with a thorough
geometric analysis in order to get more information on
the optimal synthesis. We refer the readers to [85] for a
summary of open challenges in aerospace applications.

Endnotes
1Given any x ∈ M, T∗

xM is the cotangent space to
M at x.

2 If the final time tf is fixed, then x̄(·) is said to be locally
optimal in L∞ topology (resp. in C0 topology), if it is opti-
mal in a neighborhood of u in L∞ topology (resp. in a
neighborhood of x̄(·) C0 topology).
If the final time tf is not fixed, then a trajectory x̄(·) is said
to be locally optimal in L∞ topology if, for every neighbor-
hood V of u in L∞([ 0, tf +ε] ,U), for every real number η

so that |η| ≤ ε, for every control v ∈ V satisfying E(x0, tf +
η, v) = E(x0, tf ,u) there holds C(tf + η, v) ≥ C(tf ,u).
Moreover, a trajectory x̄(·) is said to be locally optimal in

C0 topology if, for every neighborhoodW of x̄(·) inM, for
every real number η so that |η| ≤ ε, for every trajectory
x(·), associated to a control v ∈ V on [ 0, tf +η], contained
in W, and satisfying x(0) = x̄(0) = x0, x(tf + η) = x̄(tf ),
there holds C(tf + η, v) ≥ C(tf ,u).

3meaning that in some coordinates, for λ ∈[ 0, 1], the
path consists in a convex combination of the simpler
problem and of the original problem

4There, the end-point mapping has been implemented
with the exponential mapping Ex0,tf ,λ(u) = expx0,λ(tf , p0)
with initial condition (x(0), p(0)) = (x0, p0).

5 Let v1, · · · , vj+1 ∈ R
N+1, j ≤ N + 1, be affinely inde-

pendent points, i.e., vk − v1, k = 2, · · · , j + 1 are linearly
independent. A j-simplex inRN+1 is defined by the convex
hull of the set v1, · · · , vj+1. The convex hull of any subset
w1, · · · ,wr+1 ⊂ v1, · · · , vj+1 is an r-face.
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